Функции сложных процентов их характеристика и применение. Фактор фонда возмещения

Шесть функций сложного процента могут быть использованы при проведении оценки объектов недвижимости. Накопленная сумма единицы позволяет ответить на вопрос: "За сколько можно продать собственность исходя из ее нынешней рыночной стоимости и ожидаемого роста последней по сложному проценту?" Накопление единицы за период показывает, как будут расти регулярные депозиты при сложном проценте. Фактор фонда возмещения показывает, какую сумму необходимо периодически депонировать для того, чтобы через определенное число периодов при сложном проценте накопить 1 долл. Он показывает, какой должна быть ежегодная норма, необходимая для возмещения инвестиций в данный актив.

Текущая стоимость единицы показывает нынешнюю стоимость денежной суммы, которая должна быть единовременно получена в будущем, например от ожидаемой продажи земли. Фактор аннуитета показывает стоимость потока денежных средств, например доходов, получаемых от сдаваемой в аренду собственности, или платежей по ипотечному кредиту. Фактор взноса на амортизацию единицы позволяет определить размер периодического платежа, необходимого для амортизации кредита, включая процент и выплаты основной суммы долга.

В основу каждой из шести функций положен сложный процент, который означает, что вся основная сумма, находящаяся на депозитном счете, должна приносить процент, включая процент, оставшийся на счете с предыдущих периодов. Более того, процент выплачивается только на денежные средства на депозитном счете, но не на снятые с него проценты или основную сумму вклада.

Шесть функций сложного процента могут быть использованы для решения почти всех арифметических задач, связанных с оценкой приносящих доход объектов недвижимости.

Деньги имеют временную стоимость, т.е. рубль, полученный сегодня, стоит дороже, чем рубль, полученный завтра. И не только потому, что инфляция способна снизить его покупательную способность, но и потому, что рубль, инвестированный сегодня, завтра принесет конкретную прибыль. Временная стоимость денег - важный аспект при принятии решений в финансовой практике вообще и при оценке инвестиций в частности.

Вычисление на основе сложного (кумулятивного) процента означает, что начисленные на первоначальную сумму проценты к ней присоединяются, а начисление процентов в последующих периодах производится на уже наращенную сумму. Процесс наращения капитала в этом случае происходит с ускорением. Он описывается геометрической прогрессией. Механизм наращения первоначальной суммы (капитала) по сложным процентам называют капитализацией. В финансовых и экономических терминах капитализация определяется как ставка дохода на вложенный капитал. При оценке-недвижимости и инвестиций данный термин приобретает несколько иное значение.

Различают годовую капитализацию (процентный платеж начисляется и присоединяется к ранее наращенной сумме в конце года), полугодовую, квартальную, месячную и ежедневную. Существует также понятие непрерывного начисления процентов, которое по своему смыслу весьма близко к ежедневному начислению.

Расчет наращенной суммы по сложным процентам производится по формуле:

денежный платеж рента задолженность

где S - наращенная сумма;

Р - первоначальная сумма, на которую начисляются проценты;

i - ставка сложных процентов, выраженная десятичной дробью;

п - число лет, в течение которых начисляются проценты.

Величина называется множителем наращения сложных процентов. Она показывает, на сколько увеличится одна денежная единица при наращении на нее процентов по ставке i в течение п лет.

Однако в большинстве случаев указывается не квартальная или месячная ставка, а годовая ставка, которая называется номинальной. Кроме того, указывается число периодов (т) начисления процентов в году. Тогда для расчета наращенной суммы используется формула:

где i - номинальная годовая процентная ставка;

т - число периодов начисления процентов в году;

п - число лет;

тп - число периодов начисления процентов за весь срок контракта.

По формулам (3.1) и (3.2) мы осуществляли дискретное наращение процентов, т.е. проценты начислялись раз в год, квартал или месяц. Непрерывное начисление процентов предполагает, что проценты начисляются за возможно наиболее короткий период времени. Хотя имеется в виду, что этот период будет бесконечно коротким, наиболее точным приближением непрерывного начисления процентов является ежедневное начисление. При этом для определения наращенной суммы можно использовать формулу (3.2). Так, при годовой ставке 10% и продолжительности года в 360 дней (подобная продолжительность года принята в банковских расчетах в ряде стран) при ежедневном начислении процентов.

Термин «дисконтирование» употребляется в финансовой практике очень широко. Под ним может пониматься способ нахождения величины Р на некоторый момент времени при условии, что в будущем при начислении на нее процентов она могла бы составить наращенную сумму S. Величину Р, найденную дисконтированием наращенной величины S, называют современной, текущей или приведенной величиной. С помощью дисконтирования в финансовых вычислениях учитывается фактор времени. Текущая стоимость - это величина, обратная наращенной стоимости, т.е. дисконтирование и ставка дисконта противоположны понятиям «накопление» и «ставка процента». Например, если вы через год должны получить по своему банковскому вкладу 1100 руб., а банк производил начисление из расчета 10% годовых, то текущая стоимость вашего вклада составляет 1 тыс. руб.

Так как текущая стоимость является обратной величиной наращенной суммы, то она определяется по формуле:

где - дисконтный множитель. Он показывает текущую стоимость одной денежной единицы, которая должна быть получена в будущем.

При начислении процентов т раз в году расчет текущей стоимости производится по формуле:

где - дисконтный множитель.

Рассматривая современную величину, необходимо обратить внимание на два ее свойства. Одно из них заключается в том, что величина процентной ставки, по которой производится дисконтирование, и современная величина находятся в обратной зависимости, т.е. чем выше процентная ставка, тем меньше современная величина при прочих равных условиях.

Также в обратной зависимости находятся современная величина и срок платежа. С увеличением срока платежа (п) современная величина будет становиться все меньше. Предел значений современной величины (Р) при сроке платежа (п), стремящемся к бесконечности, составит:

При очень больших сроках платежа его современная величина будет крайне незначительной. Так, например, если кто-то решит завещать своим потомкам получить через 100 лет сумму в 50 млн. руб., то для этого ему достаточно положить под 8% годовых 22,72 тыс. руб.

С ростом величины т (число периодов начисления процентов) дисконтный множитель уменьшается, а следовательно, снижается и текущая величина Р.

Между тем оплата по заключенным сделкам может предусматривать как разовый платеж, так и ряд выплат, распределенных во времени. Выплата арендной платы, выплаты за приобретенное имущество в рассрочку, инвестирование средств в различные программы и т.п. в большинстве случае предусматривают платежи, производимые через определенные промежутки времени, т.е. образуется поток платежей.

Ряд последовательных фиксированных платежей, производимых через равные промежутки времени, называются финансовой рентой, или аннуитетом.

По моменту выплат членов ренты последние подразделяются на обычные (постнумерандо), в которых платежи производятся в конце соответствующих периодов (года, полугодия и т.д.), и пренумерандо, в которых платежи осуществляются в начале этих периодов. Встречаются также ренты, в которых предусматривается поступление платежей в середине периода.

Обобщающими показателями ренты являются: наращенная сумма и современная (текущая, приведенная) величина.

Наращенная сумма - это сумма всех членов потока платежей с начисленными на них процентами на конец срока, т.е. на дату последней выплаты. Наращенная сумма показывает, какую величину будет представлять капитал, вносимый через равные промежутки времени в течение всего срока ренты вместе с начисленными процентами.

Современная величина потока платежей - это сумма всех его членов, уменьшенная (дисконтированная) на величину процентной ставки на определенный момент времени, совпадающий с началом потока платежей или предшествующий ему.

Величина является коэффициентом наращения ренты, который называют также коэффициентом накопления денежной единицы за период.

Ранее указывалось, что некоторые ренты реализуются сразу же после заключения контракта, т.е. первый платеж производится немедленно, а последующие платежи производятся через равные интервалы. Такие ренты (пренумерандо) также называются авансовыми, или причитающимися аннуитетами. Сумма членов такой ренты вычисляется по формуле:

То есть сумма членов ренты пренумерандо больше наращенной суммы ренты постнумерандо в раз, поэтому наращенная сумма ренты пренумерандо равна:

где S - наращенная сумма постнумерандо.

В случаях когда платежи производятся в середине периодов, вычисление наращенной суммы производится по формуле:

где S 0 - наращенная сумма платежей, выплачиваемых в конце каждого периода (рента постнумерандо).

Современная величина ренты (ее также называют текущей, или приведенной величиной) является суммой всех членов ренты, дисконтированных на момент приведения по выбранной дисконтной ставке. Для ренты с членами, равными R, современная величина рассчитывается по формуле:

где А - коэффициент приведения ренты, показывающий сколько рентных платежей (R) содержится в современной величине;

i - годовая процентная ставка, по которой производится дисконтирование;

п - срок рентных платежей.

Данный показатель также называется текущей стоимостью обычного аннуитета, или текущей стоимостью будущих платежей. Коэффициенты приведения ренты - табулированы.

Расходы, связанные с погашением долга, т.е. погашение суммы самого долга (амортизация долга), и выплатой процентов по нему, называются расходами по обслуживанию долга.

Существуют различные способы погашения задолженности. Участники сделки оговаривают их при заключении контракта. В соответствии с условиями контракта составляется план погашения задолженности.

Одним из важнейших элементов плана является определение числа выплат в течение года, т.е. уточнение числа так называемых срочных уплат и их величины.

Срочные уплаты рассматриваются как средства, предназначенные для погашения как основного долга, так и текущих процентных платежей по нему. При этом средства, направленные на погашение (амортизацию) основного долга, могут быть равными или изменяющимися по каким-либо закономерностям, а проценты могут выплачиваться отдельно.

Погашение долга может производиться аннуитетами, т.е. платежами, вносимыми через равные промежутки времени и содержащими как выплату основного долга, так и процентный платеж по нему. Величина аннуитета может быть постоянной, а может изменяться в арифметической или геометрической прогрессии.

Ниже рассмотрим случай, когда план составлен таким образом, чтобы погашение кредита производилось в конце каждого расчетного периода равными срочными уплатами, включающими выплату основной суммы долга и процентов по нему и позволяющими полностью погасить кредит в течение установленного срока. Каждая срочная уплата (Y) будет являться суммой двух величин: годового расхода по погашению основного долга (R) и процентного платежа по нему (I), т.е.

Расчет срочной годовой уплаты производится по формуле:

где i - процентная ставка;

п - срок кредита;

D - величина долга.

Величина называется коэффициентом погашения задолженности, или взносом на амортизацию денежной единицы. Его можно также представить как обратную величину текущей стоимости аннуитета, т.е. .

На практике может потребоваться знание величины остатка невыплаченного основного долга на какой-либо период. Эта величина рассчитывается по формуле:

где k - номер расчетного периода, в котором произведена последняя срочная уплата.

Покупка недвижимости в большинстве случаев сопряжена с получением кредита. В связи с этим необходимо заранее знать, какую сумму потребуется депонировать в каждый платежный период, чтобы обеспечить погашение основной суммы долга (без учета процентных выплат) в установленный срок.

Для решения этой задачи воспользуемся формулой:

где R 1 - расход по погашению основного долга в первом платежном периоде;

D - сумма основного долга;

п - срок кредита;

i - процентная ставка.

Величина называется фактором фонда возмещения. Она показывает, какую сумму потребуется депонировать в конце каждого платежного периода, чтобы через заданное число периодов сумма основного кредита была полностью погашена.

Для расчета суммы, идущей на погашение основного долга в любом периоде, необходимо перемножить фактор фонда возмещения и множитель наращения сложных процентов для данного периода, т.е.

где k - число периодов, за которые произведено погашение основного долга.

Нами были рассмотрены функции сложного процента с использованием основной формулы, описывающей накопленную сумму единицы. Все рассмотренные формулы (факторы) являются производными от основной формулы. Каждая из них предусматривает, что проценты приносят деньги, находящиеся на депозитном счете, причем только до тех пор, пока они остаются на этом счете. Каждая из формул учитывает эффект сложного процента, т.е. такого процента, который, будучи полученным, переводится в основную сумму.

Все перечисленные формулы сведены в таблицу, что несколько облегчает ведение финансовых расчетов. Таблица имеет наименование: «Таблицы сложных процентов. 6 функций сложного процента». Величины, входящие в таблицу, находятся между собой в определенной связи. Ниже в табл. приводится эта связь.

Сложные проценты применяют в тех случаях, когда процент по кредитам (ссудам) выплачивают не сразу, а его присоединя­ют к сумме долга с последующим определением наращенной суммы FV. Такая процедура начисления «процент на процент» называется капитализацией. Наращение идет по сложному про­центу в геометрической прогрессии, а процесс компаудинга (на­копления) описывается уравнением FV= PV(1+i) n

В свя­зи с этим для расчета процентной суммы используется следую­щая формула:

где i - годовая ставка;

n - количество периодов начисления;

m - число периодов начисления;

n*m - общее число периода начисления.

Когда интервалы между очередными платежами постоянны, то такую последовательность называют финансовой рентой или аннуитетом. Аннуитет (серия равновеликих платежей в течение n-периодов) называется обычным, если платежи осуществляются в конце каждого периода, и авансовым, если платежи осуществ­ляются в начале каждого периода.

Первая функция сложного процента - аккумулированная сум­ма капитала. Мы уже убедились, что в отличие от простого про­цента сложный предполагает, что доход приносит не только пер­воначальная сумма, но и полученный ранее процент на нее. Для определения стоимости, которую будет иметь капитал через не­сколько лет FV при использовании процедуры сложных процен­тов, используют формулу, отражающую процесс аккумулирования (компаундинга), наращения в соответствии с геометрической про­грессией: FV= PV(1+i) n

где FV- аккумулированная (будущая) сумма капитала;

PV - текущая стоимость (стоимость инвестиций в начальный пери­од);

i - ставка процента (например, i = 0,10, т.е. 10%);

n - количество периодов начисления.

Эта формула в финансово-экономических расчетах и опреде­ляет первую функцию сложного процента, а выражение (1+i) n называется множителем (коэффициентом) наращения или буду­щей стоимостью единицы аккумулированного капитала F 1: F 1 =(1+i) n

где F 1 рассчитывается или определяется по таблице сложных процентов.



Таким образом, процесс аккумулирования депонированно­го, или инвестированного, капитала есть процесс накопления денег по заданной ставке i в течение определенного периода времени п.

При более частом, чем один раз в год, аккумулировании фак­тически полученный доход в конце года включает начисленные в году проценты. В связи с этим различают годовую номиналь­ную и годовую фактическую (эффективную) процентные ставки.

Годовая фактическая ставка - это годовая ставка, учитыва­ющая начисленные сложные проценты. Расчет годовой факти­ческой ставки ведется как процентное отношение дохода к ка­питалу в конце года, к величине капитала в начале года; в прак­тике фактическую ставку называют эффективной.

Вторая функция сложного процента - это будущая стоимость п-периодного аннуитета. Рассмотрим серию равновеликих и рав­номерных платежей (вкладов) под процент на определенное ко­личество периодов, при том что в каждом периоде производятся вклады капиталов (РМТ) одной и той же величины (серия вкла­дов - аннуитет). Этот поток платежей и есть аннуитет.

Наращенная сумма ренты (n-периодного аннуитета) пред­ставляет собой сумму всех членов ренты с начисленными на них процентами к концу ее срока.

Аннуитет называется обычным, если платежи осуществляются в конце каждого периода (рента пост- нумерандо), и авансовым, если платежи осуществляются в нача­ле каждого периода (рента пренумерандо).

Наращенная сумма рен­ты n-периодного аннуитета будет равна:

где (1 + i) n – 1/f = F 2 - вторая функция сложного процента.

В финансовых расчетах последнее выражение также называ­ют фактором фонда накопления или будущей стоимостью п- периодного аннуитета с платежом в одну денежную единицу (см. таблицу сложных процентов Инвуда).

В отличие от обычного аннуитета при авансовом аннуитете (пренумерандо) первый платеж осуществляется в начале перво­го периода, т. е. он приносит доход в течение всех n-периодов. Каждый последующий платеж работает на один период меньше, чем предыдущий, наконец, последний платеж приносит доход в течение только одного периода. Как и в случае обычного анну­итета, будущие стоимости каждого платежа образуют геометри­ческую прогрессию со знаменателем (1 + i), а первый член этой прогрессии - РМT(1 + i). Используя формулу расчета суммы и членов геометрической прогрессии, получим:

В этом случае фактор фонда накопления F 2 (будущая сто­имость авансового аннуитета с платежом в одну денежную еди­ницу) будет равен:

Третья функция сложного процента(обратная второй) - фак­тор фонда возмещения капитала. Из второй функции имеем:

Где i/(1+i) n –1 = F 3 - фактор фонда возмещения, третья функция сложного

процента.

Коэффициент F 3 показывает денежную сумму, которую не­обходимо вносить в конце каждого периода для того, чтобы че­рез определенное число периодов остаток на счете составил одну денежную единицу; причем данный фактор учитывает получае­мый по взносам процент.

Можно сравнить фактор фонда накопления F 2 и фактор фонда возмещения F 3 Видно, что функция F 3 при фиксированных n и i есть величина, обратная фактору фонда накопления F 2 т.е.

Сравнивая фактор фонда накопления (будущую стоимость авансового аннуитета с платежом в одну единицу) и фактор аван­сового фонда возмещения, получим соотношение:

Четвертая функция сложного процента (обратная первой) - это текущая стоимость будущего денежного потока, т.е. текущая стоимость денег (инвестиций), PV определится из выражения:

Где 1/ (1+i) n = F 4 - четвертая функция сложного процента, текущая стоимость будущей единицы.

Сравнивая полученную формулу с фактором первой функции, видим:

Процесс пересчета будущей стоимости денежной суммы (по­тока денег); FV в настоящую называется дисконтированием, а ставка, по которой осуществляется дисконтирование, часто на­зывают ставкой дисконта.

C по­мощью функции F. можно ответить на два вопроса:

1. Сколько будет стоить сегодня сумма, которую получит ин­вестор через л-периодов?

2. За сколько нужно купить объект (сколько нужно вложить в объект), чтобы в результате будущей его продажи через n-пе­риодов обеспечить требуемую норму дохода на?

Пятая функция сложного процента - это текущая стоимость аннуитета. Как и предыдущая, данная функция связана с про­цессом дисконтирования. Пятая функция определяет текущую стоимость серии равномерных равновеликих поступлений де­нежных средств в течение n-периодов с учетом заданной суммы. Современная величина потока платежей PV - это сумма всех его членов (аннуитетов), уменьшенная (дисконтированная) на величину процентной ставки на конкретный момент времени. Текущая стоимость может быть обычного аннуитета или аван­сового n-периодного аннуитета

где PV - представляет собой сумму я членов геометрической прогрессии со знаменателем 1/1+i и первым членом PMT/1+c

Отсюда, пользуясь известной формулой суммы членов гео­метрической прогрессии, получим уравнение:

Где1 – (1+i) n / i= F 5 - пятая функция сложного процента, текущая стоимость " обычного аннуитета.

Авансовый аннуитет построен таким образом, что первый пла­теж РМТ 1 в потоке доходов производится немедленно, а последу­ющие платежи - через равные промежутки времени. Так как РМТ 1 производится в начальный момент времени, дисконтировать его не нужно. Последующий же я - 1 платеж и другие дисконтируют­ся с учетом того, что k-й платеж производится через k - 1 перио­дов от начального момента.

В данном случае сумма стоимости всех n-платежей - это

геометрическая прогрессия со знаменателем 1/1+i и первым чле­ном PMT.

Тогда текущая стоимость авансового аннуитета будет равна:

Если РМТ = 1, то получим выражение для фактора текущей стоимости авансового аннуитета F " 5:

Функции F 5 и F " 5 имеют особое значение в статистических расчетах, в оценке инвестиционных проектов, имущества, при­носящего доход.

Шестая функция сложного процента (обратная к 5-й) в прак­тике экономико-финансовых вычислений имеет название ипо­течная постоянная, или размер платежей для покрытия долга. По известной текущей стоимости (размеру кредита) определя­ется размер платежей:

Для PV = 1 получим значение взноса на амортизацию де­нежной единицы - это и есть шестая функция сложного про­цента - F 6 (ипотечная постоянная).

Для обычных взносов (рента постнумерандо) шестая функ­ция имеет вид:

Для авансовых взносов (рента пренумерандо) шестая функ­ция имеет вид:

Каждый равновеликий взнос РМТ включает сумму процент­ных денег I nt и уплату первоначальной суммы PRN - суммы основного долга: РМТ=PRN +I nt

Нужно подчеркнуть, что ипотечная постоянная функция F 6 связана с функцией F 3 следующим образом: F 6 =F 3 +i т.е. ипотечная постоянная - это взнос на амортизацию капита­ла, равный сумме фактора фонда возмещения F 3 и ставки про­цента на капитал i.

Равномерно-аннуитетный метод возврата основных средств (метод Инвуда). Платежи РМТ идут в конце периода равными долями с увели­чивающимися размерами PRN возврата основной суммы долга и с уменьшающимися начислениями процентов i - доходов.

Равномерно-прямолинейный метод (метод Ринга). Чистый операционный доход равномер­но снижается при постоянной норме возврата основного долга PRN, а доход I nt равномерно уменьшается. В отличие от метода Ринга метод Инвуда основан на том, что ипотечная постоянная равна сумме фактора фонда возмещения F 3 и ставки капитализации i.

Шестая функция сложного процента широко применяется в экономическом обосновании лизинговых операций.

Расчет исчисления реальной ценности (стоимости) денег основан на временной оценке денежных потоков, которая основана на следующем. Цена приобретения объекта недвижимости определяется, в конечном счете, величиной дохода, который инвестор предполагает получить в будущем. Однако покупка объекта недвижимости и получение доходов происхо¬дят в разные отрезки времени. Поэтому простое сопоставление величи¬ны затрат и доходов в той сумме, в которой они будут отражены в фи¬нансовой отчетности, невозможно (например, 10 млн. рублей готового дохода, полученные через 3 года, будут меньше этой суммы в настоящее время). Однако на стоимость денег оказывают влияние не только инфор¬мационные процессы, но и основное условие инвестирования - вло¬женные деньги должны приносить доход

Приведение денежных сумм, возникающих в разное время, к сопо¬ставимому виду называется временной оценкой денежных потоков. В этих расчетов положен сложный процент, который означает, что вся основная сумма, находящаяся на депозите, должна приносить процент, включая процент, оставшийся на счете с предыдущих периодов

Теория и практика использования функций слож¬ного процента базируется на ряде допущений: 1. Денежный поток, в котором суммы различаются по величине, называют денежным потоком

2. Денежный поток, в котором все суммы равновелики, называют аннуитетом

3. Суммы денежного потока возникают через одинаковые промежутки времени, называемые периодом

4. Доход, получаемый на инвестированный капитал, из хозяйствен¬ного оборота не изымается, а присоединяется к основному капиталу

5. Суммы денежного потока возникают в конце периода (в иных случаях требуется соответствующая корректировка)

Рассмотрим подробнее шесть функций слож¬ного процента

1. Накопленная сумма единицы

Данная функция позволяет определить будущую стоимость имеющейся денежной суммы исходя их предполагаемой ставки периодичности дохо¬да, срока накопления и начисления процентов. Накопленная сумма еди¬ницы - базовая функция сложного процента, позволяющая определить будущую стоимость при заданном периоде, процентной ставке и извест¬ной сумме в будущем

FV = PV * (1 + i)n Пример задачи: Получен кредит 150 млн. руб. сроком на 2 года, под 15% годовых; начисление % происходит ежеквартально. Определить наращенную сумму, подлежащую возврату. 2. Текущая стоимость единицы (фактор реверсии)

Текущая стоимость единицы (ревер¬сии) дает возможность определить настоящую (текущую, приведенную) стоимость суммы, величина которой известна в будущем при заданном периоде процентной ставки. Это процесс, полностью обратный начисле¬нию сложного процента

PV = FV / (1 + i)n Показывает текущую стоимость денежной суммы, которая должна быть единовременно получена в будущем

Пример задачи: Какова текущая стоимость 1 000 долларов, полученных в конце пятого года при 10% годовых при годовом начислении процента? 3. Накопление единицы за период (будущая стоимость аннуитета) . Показывает, какой по истечении всего срока будет стоимость серии равных сумм, депонированных в конце каждого из периодических интервалов, т.е. будущая стоимость аннуитета. (Аннуитет - это денежный поток, в котором все суммы равновелики и возникают через одинаковые промежутки времени)

FVA = (1 + i)n – 1 i PMT Пример задачи: Определить будущую стоимость регулярных ежемесячных платежей величиной по 12000$ в течение 4 лет при ставке 11,5% и ежемесячном накоплении

4. Текущая стоимость обычного аннуитета. Показывает текущую стоимость равномерного потока доходов, например, доходов, получаемых от сдаваемой в аренду собственности. Первое поступление происходит в конце первого периода; последующие - в конце каждого последующего периода

PVA = PMT * 1 - (1 + i)-n i Пример задачи: Определить величину кредита, если известно что в его погашение ежегодно выплачивается по 30000 $ в течение 8 лет при ставке 15%. 5. Фактор фонда возмещения Показывает сумму равновеликого периодического взноса, который вместе с процентом необходим для того, чтобы к концу определенного периода накопить сумму, равную FVA. SFF = FVA * i (1 + i)n - 1 Пример задачи: Определить сумму, ежемесячно вносимую в банк под 15% годовых для покупки дома стоимостью 65000000$ через 7 лет. 6. Взнос на амортизацию единицы Показывает равновеликий периодический платеж, необходимый для полной амортизации кредита, т.е. позволяет определить размер платежа, необходимого для возврата кредита, включая процент и выплату основной суммы долга: PMT = PVA * i 1 - (1 + i)-n Пример задачи: Какими должны быть ежемесячные выплаты по самоамортизирующемуся кредиту в 200000 долларов, предоставленному на 15 лет при номинальной годовой ставке 12%? Тема 2. Рынок недвижимости и особенности его функционирования

Сложные проценты применяют в тех случаях, когда процент по кредитам (ссудам) выплачивают не сразу, а его присоединя­ют к сумме долга с последующим определением наращенной суммы FV. Такая процедура начисления «процент на процент» называется капитализацией. Наращение идет по сложному про­центу в геометрической прогрессии, а процесс компаудинга (на­копления) описывается уравнением FV= PV(1+i) n

В свя­зи с этим для расчета процентной суммы используется следую­щая формула:

где i - годовая ставка;

n - количество периодов начисления;

m - число периодов начисления;

n*m - общее число периода начисления.

Когда интервалы между очередными платежами постоянны, то такую последовательность называют финансовой рентой или аннуитетом. Аннуитет (серия равновеликих платежей в течение n-периодов) называется обычным, если платежи осуществляются в конце каждого периода, и авансовым, если платежи осуществ­ляются в начале каждого периода.

Первая функция сложного процента - аккумулированная сум­ма капитала. Мы уже убедились, что в отличие от простого про­цента сложный предполагает, что доход приносит не только пер­воначальная сумма, но и полученный ранее процент на нее. Для определения стоимости, которую будет иметь капитал через не­сколько лет FV при использовании процедуры сложных процен­тов, используют формулу, отражающую процесс аккумулирования (компаундинга), наращения в соответствии с геометрической про­грессией: FV= PV(1+i) n

где FV- аккумулированная (будущая) сумма капитала;

PV - текущая стоимость (стоимость инвестиций в начальный пери­од);

i - ставка процента (например, i = 0,10, т.е. 10%);

n - количество периодов начисления.

Эта формула в финансово-экономических расчетах и опреде­ляет первую функцию сложного процента, а выражение (1+i) n называется множителем (коэффициентом) наращения или буду­щей стоимостью единицы аккумулированного капитала F 1: F 1 =(1+i) n

где F 1 рассчитывается или определяется по таблице сложных процентов.

Таким образом, процесс аккумулирования депонированно­го, или инвестированного, капитала есть процесс накопления денег по заданной ставке i в течение определенного периода времени п.

При более частом, чем один раз в год, аккумулировании фак­тически полученный доход в конце года включает начисленные в году проценты. В связи с этим различают годовую номиналь­ную и годовую фактическую (эффективную) процентные ставки.

Годовая фактическая ставка - это годовая ставка, учитыва­ющая начисленные сложные проценты. Расчет годовой факти­ческой ставки ведется как процентное отношение дохода к ка­питалу в конце года, к величине капитала в начале года; в прак­тике фактическую ставку называют эффективной.



Вторая функция сложного процента - это будущая стоимость п-периодного аннуитета. Рассмотрим серию равновеликих и рав­номерных платежей (вкладов) под процент на определенное ко­личество периодов, при том что в каждом периоде производятся вклады капиталов (РМТ) одной и той же величины (серия вкла­дов - аннуитет). Этот поток платежей и есть аннуитет.

Наращенная сумма ренты (n-периодного аннуитета) пред­ставляет собой сумму всех членов ренты с начисленными на них процентами к концу ее срока.

Аннуитет называется обычным, если платежи осуществляются в конце каждого периода (рента пост- нумерандо), и авансовым, если платежи осуществляются в нача­ле каждого периода (рента пренумерандо).

Наращенная сумма рен­ты n-периодного аннуитета будет равна:

где (1 + i) n – 1/f = F 2 - вторая функция сложного процента.

В финансовых расчетах последнее выражение также называ­ют фактором фонда накопления или будущей стоимостью п- периодного аннуитета с платежом в одну денежную единицу (см. таблицу сложных процентов Инвуда).

В отличие от обычного аннуитета при авансовом аннуитете (пренумерандо) первый платеж осуществляется в начале перво­го периода, т. е. он приносит доход в течение всех n-периодов. Каждый последующий платеж работает на один период меньше, чем предыдущий, наконец, последний платеж приносит доход в течение только одного периода. Как и в случае обычного анну­итета, будущие стоимости каждого платежа образуют геометри­ческую прогрессию со знаменателем (1 + i), а первый член этой прогрессии - РМT(1 + i). Используя формулу расчета суммы и членов геометрической прогрессии, получим:

В этом случае фактор фонда накопления F 2 (будущая сто­имость авансового аннуитета с платежом в одну денежную еди­ницу) будет равен:



Третья функция сложного процента(обратная второй) - фак­тор фонда возмещения капитала. Из второй функции имеем:

Где i/(1+i) n –1 = F 3 - фактор фонда возмещения, третья функция сложного

процента.

Коэффициент F 3 показывает денежную сумму, которую не­обходимо вносить в конце каждого периода для того, чтобы че­рез определенное число периодов остаток на счете составил одну денежную единицу; причем данный фактор учитывает получае­мый по взносам процент.

Можно сравнить фактор фонда накопления F 2 и фактор фонда возмещения F 3 Видно, что функция F 3 при фиксированных n и i есть величина, обратная фактору фонда накопления F 2 т.е.

Сравнивая фактор фонда накопления (будущую стоимость авансового аннуитета с платежом в одну единицу) и фактор аван­сового фонда возмещения, получим соотношение:

Четвертая функция сложного процента (обратная первой) - это текущая стоимость будущего денежного потока, т.е. текущая стоимость денег (инвестиций), PV определится из выражения:

Где 1/ (1+i) n = F 4 - четвертая функция сложного процента, текущая стоимость будущей единицы.

Сравнивая полученную формулу с фактором первой функции, видим:

Процесс пересчета будущей стоимости денежной суммы (по­тока денег); FV в настоящую называется дисконтированием, а ставка, по которой осуществляется дисконтирование, часто на­зывают ставкой дисконта.

C по­мощью функции F. можно ответить на два вопроса:

1. Сколько будет стоить сегодня сумма, которую получит ин­вестор через л-периодов?

2. За сколько нужно купить объект (сколько нужно вложить в объект), чтобы в результате будущей его продажи через n-пе­риодов обеспечить требуемую норму дохода на?

Пятая функция сложного процента - это текущая стоимость аннуитета. Как и предыдущая, данная функция связана с про­цессом дисконтирования. Пятая функция определяет текущую стоимость серии равномерных равновеликих поступлений де­нежных средств в течение n-периодов с учетом заданной суммы. Современная величина потока платежей PV - это сумма всех его членов (аннуитетов), уменьшенная (дисконтированная) на величину процентной ставки на конкретный момент времени. Текущая стоимость может быть обычного аннуитета или аван­сового n-периодного аннуитета

где PV - представляет собой сумму я членов геометрической прогрессии со знаменателем 1/1+i и первым членом PMT/1+c

Отсюда, пользуясь известной формулой суммы членов гео­метрической прогрессии, получим уравнение:

Где1 – (1+i) n / i= F 5 - пятая функция сложного процента, текущая стоимость " обычного аннуитета.

Авансовый аннуитет построен таким образом, что первый пла­теж РМТ 1 в потоке доходов производится немедленно, а последу­ющие платежи - через равные промежутки времени. Так как РМТ 1 производится в начальный момент времени, дисконтировать его не нужно. Последующий же я - 1 платеж и другие дисконтируют­ся с учетом того, что k-й платеж производится через k - 1 перио­дов от начального момента.

В данном случае сумма стоимости всех n-платежей - это

геометрическая прогрессия со знаменателем 1/1+i и первым чле­ном PMT.

Тогда текущая стоимость авансового аннуитета будет равна:

Если РМТ = 1, то получим выражение для фактора текущей стоимости авансового аннуитета F " 5:

Функции F 5 и F " 5 имеют особое значение в статистических расчетах, в оценке инвестиционных проектов, имущества, при­носящего доход.

Шестая функция сложного процента (обратная к 5-й) в прак­тике экономико-финансовых вычислений имеет название ипо­течная постоянная, или размер платежей для покрытия долга. По известной текущей стоимости (размеру кредита) определя­ется размер платежей:

Для PV = 1 получим значение взноса на амортизацию де­нежной единицы - это и есть шестая функция сложного про­цента - F 6 (ипотечная постоянная).

Для обычных взносов (рента постнумерандо) шестая функ­ция имеет вид:

Для авансовых взносов (рента пренумерандо) шестая функ­ция имеет вид:

Каждый равновеликий взнос РМТ включает сумму процент­ных денег I nt и уплату первоначальной суммы PRN - суммы основного долга: РМТ=PRN +I nt

Нужно подчеркнуть, что ипотечная постоянная функция F 6 связана с функцией F 3 следующим образом: F 6 =F 3 +i т.е. ипотечная постоянная - это взнос на амортизацию капита­ла, равный сумме фактора фонда возмещения F 3 и ставки про­цента на капитал i.

Равномерно-аннуитетный метод возврата основных средств (метод Инвуда). Платежи РМТ идут в конце периода равными долями с увели­чивающимися размерами PRN возврата основной суммы долга и с уменьшающимися начислениями процентов i - доходов.

Равномерно-прямолинейный метод (метод Ринга). Чистый операционный доход равномер­но снижается при постоянной норме возврата основного долга PRN, а доход I nt равномерно уменьшается. В отличие от метода Ринга метод Инвуда основан на том, что ипотечная постоянная равна сумме фактора фонда возмещения F 3 и ставки капитализации i.

Шестая функция сложного процента широко применяется в экономическом обосновании лизинговых операций.


В процессе проведения оценки любого объекта недвижимости оценщику приходится постоянно учитывать денежные потоки, относимые к разным промежуткам времени. Это может быть поток, генерируемый год от года оцениваемым объектом при использовании метода дисконтированных денежных потоков, или стоимость объекта-аналога, проданного некоторое время назад, или затраты на строительство, данные в ценах предыдущих лет.
Сравнивать эти потоки, а также производить с ними арифметические действия без предварительной подготовки некорректно, так как покупательная способность одной и той же денежной суммы в различные временные периоды разная.
Различная стоимость денежной единицы обусловливается следующими причинами: влиянием инфляции, снижающей покупательную способность денежных средств; колебаниями на рынках товаров и услуг (на различных сегментах рынка недвижимости); потерей части дохода из-за получения денежных средств не сейчас, а через определенный промежуток времени, которая могла быть получена за этот промежуток при инвестировании этой суммы.
Таким образом, для сравнения или произведения арифметических действий все разновременные денежные потоки необхо

димо приводить к одному и тому же моменту времени. К какому именно моменту времени, теоретически совершенно неважно, но так как все расчеты и отчет об оценке недвижимости составляются на определенную дату, то, как правило, все потоки приводятся именно к дате оценки.
Для данного приведения используется алгоритм, в финансовой математике носящий название шесть функций сложного процента или функций денежной единицы.
Как известно, проценты бывают простые и сложные. При простом исчислении по окончании каждого соответствующего периода процент начисляется исключительно на изначальную сумму. При сложном исчислении процент за каждый последующий период начисляется на основную сумму и на процентные выплаты за предыдущие периоды.
Функции сложного процента подразделяются на: будущую стоимость денежной единицы; будущую стоимость аннуитета; фактор фонда возмещения; текущую стоимость денежной единицы; взнос на амортизацию денежной единицы; текущую стоимость аннуитета.
Три первые функции применяются для пересчета текущих денежных сумм в будущие, а три последние - для пересчета будущих денежных единиц в текущие. Первый процесс называется компаундированием, а второй дисконтированием. Но на практике термин «компаундирование» не прижился и не используется, термин же «дисконтирование» применяется достаточно широко.
Рассмотрим случай, когда некоторая денежная сумма (обозначим ее PV) помещается на депозитный банковский счет под ежегодный процент / на п лет. Через год на счете окажется следующая сумма:

На второй год банковский процент будет начисляться уже не только на сумму PV, но и на проценты за первый год, что можно записать следующим образом:

На третий год ситуация будет аналогичной с той лишь разницей, что процентная составляющая увеличится:

Таким образом, в общем виде на какой угодно период накопленную сумму можно рассчитать по формуле
(1)
где PV - текущая стоимость денежной единицы;
FV - будущая стоимость денежной единицы;
/ - процентная ставка;
п - количество временных периодов.
Необходимо обратить внимание, что показатели количества периодов и процентная ставка должны быть сопоставимыми. Так, если проценты начисляются ежегодно, то п должно обозначать число лет, а / - годовую ставку, если же известно, что проценты начисляются ежемесячно, тогда формула (1) примет вид:
(2)
Приведенная формула называется функцией будущая стоимость денежной единицы и используется для пересчета денежных потоков, отнесенных к настоящему, в их будущую стоимость.
Пример 1. В настоящий момент Андрей Иванов имеет 50 000 руб. свободных средств для осуществления личных инвестиций на срок 5 лет. В процессе анализа возможных объектов вложений он обратил внимание на инвестиционный фонд А, обещающий своим вкладчикам 15 % годовых с ежеквартальным начислением дохода на счета клиентов.
В процессе расчета возможной итоговой выгоды от сотрудничества с фондом Андрей применил функцию «будущая стоимость единицы»:

Следовательно, если фонд А выполнит все свои обязательства, то через пять лет сбережения Иванова увеличатся более чем в 2 раза и составят 104 тыс. руб.

Из приведенной формулы (1) не составляет труда вывести выражение, позволяющее найти текущую стоимость денежных потоков, отнесенных к будущим временным периодам:
(3)
Эта функция носит название текущей стоимости денежной единицы.
Пример 2. Молодая семья хочет скопить за десять лет 500 тыс. руб. на образование своего ребенка. Одним из вариантов является помещение имеющихся 80 тыс. руб. на банковский депозит под 11 % годовых с ежеквартальным начислением процентов.

Для оценки своих возможностей супруги применили текущую стоимость денежной единицы:

Остальные четыре функции связаны с понятием аннуитетного платежа или аннуитета. Аннуитетом принято называть равные денежные выплаты через равные промежутки времени. Самым простым и наиболее распространенным примером аннуитетных выплат является арендная плата, поступающая на счет владельца недвижимости каждый месяц (квартал, год) от арендатора.

Если владелец недвижимого имущества захочет узнать, какая сумма накопится у него на счете за срок арендного договора, то для расчетов ему будет необходимо воспользоваться функцией будущая стоимость аннуитета или накопление единицы за период:

где РМТ - величина единичного аннуитетного платежа.

сможет скопить, Петр решил посчитать будущую стоимость трехлетнего аннуитета:

По окончании требуемого срока он будет иметь в своем распоряжении 243 тыс. 750 руб. для ремонта.
Обратная к будущей стоимости аннуитета функция носит название фактор фонда возмещения. Она применяется в случаях, если необходимо вычислить величину аннуитетного платежа, необходимого для накопления заранее известной суммы через определенный временной промежуток:

Пример 4. Убедившись в невозможности скопить средства на образование, семейная пара из примера 2 решила получить требуемую сумму на банковском счете, внося на него раз в квартал некоторую сумму.
Для этого необходимо рассчитать минимальную величину ежеквартального платежа:

Следовательно, для того чтобы за 10 лет скопить требуемую сумму, супруги должны ежеквартально вносить на счет чуть более 7 тыс. руб.
В области оценки недвижимости часто приходится иметь дело с заемными средствами, кредитами на покупку или строительство объектов. Погашение полученного кредита в финансовой математике принято называть его амортизацией, именно поэтому функцию, применяемую для расчетов аннуитетных погашающих выплат при кредитовании, называют взнос на амортизацию единицы:

где PV - сумма кредита.

Пример 5. Владелец небольшого бизнеса Иван Конев с ежемесячным доходом 40 тыс. руб. планирует взять кредит на покупку квартиры стоимостью 1,5 млн руб. Средние банковские условия состоят в сумме, не превышающей 70 % от стоимости объекта на 15 лет под 15 % годовых с ежемесячными равными выплатами в течение всего срока.


Иван решил рассчитать, какую же сумму ему придется платить каждый месяц. Для начала он нашел максимально возможную сумму кредита:

1 050 000-0,014 = 14 700 руб.
Следовательно, Коневу для погашения кредита необходимо выплачивать 14 700 руб. в месяц.

Функция текущая стоимость аннуитета применяется при известных аннуитетных платежах, если необходимо определить, сколько сумма всех этих выплат представляет в текущем выражении. Данная функция является обратной к взносу на амортизацию единицы, поэтому принимает следующий вид:

Пример 6. Иван Конев из предыдущего примера недоволен проведенными расчетами, он хочет тратить на погашение кредита не более четверти своего ежемесячного дохода, правда, возникает вопрос, какова же тогда окажется сумма кредита?
Для начала рассчитаем желаемые аннуитетные платежи:

РМТ = 40 000 25 % = 10 000 руб.

Таким образом, при желаемом уровне выплат Иван может рассчитывать лишь на кредит, составляющий 47 % от стоимости квартиры:
(714 490: 1 500 000 = 0,47).
Все представленные функции сложного процента в совокупности представляют собой формализованное представление теории стоимости денег во времени. В теории и практике оценки недвижимости часты случаи применения данных функций. Практически ни один из методов оценки не обходится без применения указанных функций.
В практической деятельности, кроме проведения расчетов, аналогичных приведенным выше примерам, широко используют готовые таблицы функций сложного процента (приложение В).
Например, если Петр Сидоров (пример 3) мог рассчитать сумму, которая он сумеет скопить за искомый период следующим образом: определить сумму ежегодного аннуитета (75 000 руб.); найти фактор будущей стоимости аннуитета. Для этого открыть в приложении В таблицу шести функций сложного процента для ставки, равной 8 %, и на пересечении строки с номером года, равном 3, и столбца с названием «Будущая стоимость аннуитета» найти нужную величину. В приводимом примере она будет равна 3,2464; перемножить величины аннуитетной выплаты и фактора будущей стоимости аннуитета.
Проделав описанные операции, получим тот же результат, что и в примере 3. Аналогичным образом можно применять таблицы шести функций сложного процента для расчетов с применением данных функций.
Вопросы и задания для самоконтроля Опишите основные положения теории стоимости денег во времени. В чем причина частого использования функций сложного процента в процессе оценки недвижимости? Владелец гостиницы планирует сделать ремонт через 5 лет. В настоящее время стоимость ремонта составляет 100 тыс. и дорожает на 4 % в год. Какую сумму ежемесячно должен класть владелец в банк под 10 % годовых, чтобы в итоге скопить требуемую сумму? За какой срок денежная сумма, положенная в банк под 8 % годовых, удвоится? Семья планирует взять кредит и выплачивать за него не более 3500 руб. ежемесячно. Средние банковские условия таковы: срок кредита 8 лет под 12 % годовых. Сумеет ли семья с помощью кредита профинансировать на 70 % покупку квартиры стоимостью 1 млн руб.? Господин Петров за 50 млн руб. приобрел склад, сданный в аренду на 10 ближайших лет с ежеквартальной выплатой арендной платы. Среднерыночное изменение цен на рынке складской недвижимости составляет 10 %. Хватит ли Петрову получаемого дохода для выплаты ипотечного кредита, выданного на 8 лет под 12 % годовых? Выплаты по кредиту осуществляются ежемесячно. Какую сумму нужно вложить в банк сейчас под 8 % годовых, чтобы получить через 10 лет 21 млн руб.? Семья планирует за 7 лет скопить на обучение ребенка, которое сейчас стоит 450 000 руб. и дорожает на 8 % в год. При этом за оставшийся срок семья планирует 35 % от требуемой суммы скопить, ежеквартально кладя деньги в банк под 11 % годовых, а на оставшуюся часть взять кредит на следующие 5 лет под 14 % годовых. Сколько семья должна класть на счет в первые годы и ежемесячно выплачивать банку в последующие?