Временной ряд и его составляющие. Временные ряды в эконометрических исследованиях

Тема 9. Статистическое изучение динамики

Понятие и классификация временных рядов

Процесс развития социально-экономических явлений во времени принято называть динамикой. Для отображения динамики строят временные ряды (ряды динамики). Временной ряд представляет собой совокупность значений статистического показателя, расположенных в хронологическом порядке. Составными элементами ряда динамики являются:

1) отдельные значения показателя, которые называются уровнями ряда (y );

2) периоды или моменты (даты) времени (t )/

Существуют различные виды временных рядов. Их можно классифицировать по различным основаниям:

1)по способу выражения уровней ряда:

– ряды абсолютных величин;

– ряды относительных величин;

– ряды средних величин.

2) по способу представления хронологии:

– моментные ряды;

– интервальные ряды.

В моментных временных рядах уровни ряда выражают состояние явления на определенный момент времени (начало месяца, квартала, года и т.д.). Например, численность поголовья крупного рогатого скота в РФ на 1 января каждого года. В интервальных временных рядах уровни ряда выражают состояние явления за определенные интервалы (периоды) времени (за месяц, за квартал, за год). Например, ежегодный пассажирооборот железнодорожным транспортом.

Отдельные уровни интервального временного ряда можно суммировать. Отдельные уровни моментного временного ряда содержат элементы повторного счета, поэтому их суммирование бессмысленно.

3) по расстоянию между уровнями:

– временные ряды с равноотстоящими уровнями во времени;

– временные ряды с неравно отстоящими уровнями во времени;

4) по наличию основной тенденции в ряду:

– стационарные временные ряды;

– нестационарные временные ряды.

Стационарным называется временной ряд, если математическое ожидание значения признака и дисперсия постоянны, не зависят от времени. Нестационарные временные ряды имеют некоторую тенденцию развития.

5) по числу показателей:

– изолированные временные ряды;



– многомерные временные ряды (комплексные).

Если ведется анализ во времени одного показателя, то ряд динамики изолированный. В многомерном ряду представлена динамика нескольких показателей, характеризующих одно явление.

Сопоставимость уровней и смыкание рядов динамики

Важнейшим условием правильного построения временного ряда является сопоставимость всех входящих в него уровней. Проблема сопоставимости данных остро стоит в рядах динамики, потому что они охватывают значительные периоды времени, за которые могли произойти изменения и привести к несопоставимости статистических данных. Прежде чем анализировать динамический ряд необходимо убедиться в сопоставимости уровней ряда и при отсутствии последней добиваться ее, пользуясь дополнительными расчетами.

Основные условия сопоставимости уровней ряда динамки :

1) одинаковые единицы измерения показателей;

2) единая методика расчета показателей;

3) одинаковые территориальные границы;

4) одинаковая полнота охвата различных частей явления;

5) учет изменения цен.

Это условие необходимо соблюдать в процессе сбора и обработки данных, либо путем их перерасчета. Приведение уровней ряда к сопоставимому виду осуществляется методом смыкания рядов динамики . Под смыканием понимают объединение в один ряд (более длинный) двух или нескольких рядов динамики, уровни которых исчислены по разной методологии или разным территориальным границам. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах).

Имеются данные о производстве продукции предприятия, методика получения которых в течение рассматриваемого периода претерпела некоторые изменения (табл. 9.1).

Таблица 9.1 – Динамика объема производства продукции, млн. руб.

Показатели
По старой методике 19,1 19,7 20,0 21,2
По новой методике 22,8 23,6 24,5 26,2 28,1
Сомкнутый (сопоставимый) ряд 21,0 21,7 22,0 22,8 23,6 24,5 26,2 28,1

Для анализа динамики объемов производства продукции за 2006-2013 гг. необходимо сомкнуть (объединить) исследуемые два ряда в один. Для этого следует пересчитать данные 2006-2008 гг. по новой методике. На основе данных за 2009 г. найдем коэффициент перевода (k ) как соотношение между ними:

k = 22,8 / 21,2 = 1,1,

Умножая на полученный коэффициент данные за 2006-2008 гг., приводим их в сопоставимый вид с последующими уровнями, таким образом, получаем сомкнутый (сопоставимый) ряд.

Показатели изменения уровней временного ряда

Анализ временных рядов включает расчет различных показателей, характеризующих изменение уровней ряда. Показатели, используемые для анализа временных рядов, можно разделить на абсолютные, относительные и обобщающие (средние) (рис. 9.1).

Рис. 9.1. Основные показатели изменения уровней временного ряда

Абсолютные и относительные показатели могут быть рассчитаны на цепной или базисной основе. При расчете цепных показателей каждый уровень ряда сравнивается с непосредственно ему предшествующим. При расчете базисных показателей каждый уровень ряда сравнивается с одним и тем же уровнем, принятым за базу сравнения. Обычно в качестве базы сравнения принимается первый уровень временного ряда.

Рассмотрим формулы для расчета основных показателей изменения уровней временного ряда.

Абсолютный прирост y ) определяется как разность двух сравниваемых уровней.

Абсолютный прирост цепной :

Δy ц = y i – y i – 1 ,

Абсолютный прирост базисный :

Δy б = y i – y 0 ;

где y i i -й уровень ряда;

y 0 – базисный уровень ряда.

Темп роста (Т р) определяется как отношение двух сравниваемых уровней временного ряда и выражается в процентах.

Темп роста цепной :

Темп роста базисный:

Темп роста может быть выражен в виде коэффициента (К р). В этом случае он показывает, во сколько раз данный уровень ряда больше (или меньше) предшествующего (или базисного) уровня.

Темп прироста (Т пр) показывает, на какую долю (или процент) данный уровень ряда больше (или меньше) предыдущего или базисного.

Темп прироста цепной :

.

Темп прироста базисный:

.

Темп прироста можно вычислить также путем вычитания из темпов роста 100%, то есть Т пр = Т р –100.

Абсолютное значение одного процента прироста () показывает, сколько абсолютных единиц приходится на 1% прироста:

.

Средние величины временного ряда – это обобщающие характеристики развития явления за изучаемый период.

Средний уровень временного ряда () рассчитывается по средней хронологической. Средней хронологической называется средняя, исчисленная из значений, изменяющихся во времени. Методы расчета среднего уровня интервального и моментного рядов динамики различны.

Средний уровень интервального ряда с равноотстоящими уровнями находится по формуле средней арифметической простой:

где n – число уровней ряда.

Средний уровень моментного ряда с равноотстоящими уровнями определяют по формуле средней хронологической простой:

,

Средний абсолютный прирост:

.

Средний темп роста:

Средний темп прироста:

.

Для комплексного анализа временного ряда необходимо использовать всю систему показателей.

Пример

Проанализировать динамику производства легковых автомобилей в городе N (табл. 9.2).

Таблица 9.2 - Динамика производства легковых автомобилей в городе N

Год Тыс. шт. Абсолютные приросты, тыс. шт. Темпы роста, % Темпы прироста Абсолютное значение 1% прироста, тыс. шт.
цепные базисные цепные базисные цепные базисные
835,1 867,4 986,2 836,0 955,5 969,0 1000,0 - 32,3 118,8 -152,2 119,5 13,5 31,0 - 32,3 151,1 0,9 120,4 133,9 164,9 - 103,87 113,70 84,77 114,29 101,41 103,20 - 103,87 118,09 100,10 114,42 116,03 119,75 - 3,87 13,70 -28,90 14,29 1,41 3,20 - 3,87 18,09 0,10 14,42 16,03 19,75 - 8,35 8,67 5,27 8,36 9,56 9,69
Итого 6449,2 164,9 - - - - - -

Например, для 2009 г.

Это значит, что за период 2007-2013 гг. в среднем каждый год объем производства легковых автомобилей увеличивался на 2,3%.

Большинство эконометрических моделей строится как динамические эконометрические модели. Это означает, что моделирование причинно-следственных связей между переменными осуществляется во времени, а исходные данные представлены в форме временных рядов.

Временной ряд х t (t=1; n ) – ряд значений какого-либо показателя за несколько последовательных промежутков времени.

Каждый временной ряд х t складывается из следующих основных составляющих (компонентов):

  1. Тенденции, характеризующей общее направление динамики изучаемого явления. Аналитически тенденция выражается некоторой функцией времени, называемой трендом (Т ).
  2. Циклической или периодической составляющей, характеризующей циклические или периодические колебания изучаемого явления. Колебания представляют собой отклонения фактических уровней ряда от тренда. Объем продаж некоторых товаров подвержен сезонным колебаниям. Сезонные колебания (S ) – периодические колебания, которые имеют определенный и постоянный период равный годовому промежутку. Конъюнктурные колебания (К) связаны с большими экономическими циклами, период таких колебаний – несколько лет.
  3. Случайной составляющей, которая является результатом воздействия множества случайных факторов (Е ).
Тогда уровень ряда можно представить как функцию от этих составляющих (компонентов): =f(T, K, S, E).

В зависимости от взаимосвязи между составляющими может быть построена либо аддитивная модель : =T+K+S+E, либо мультипликативная модель : =T·K·S·E ряда динамики.

Для определения состава компонентов (структуры временного ряда) в модели временного ряда строят автокорреляционную функцию.
Автокорреляция – корреляционная связь между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L - лаг). То есть, автокорреляция - это связь между рядом: x 1 , x 2 , ... x n-l и рядом x 1+l , x 2+l , ...,x n , где L - положительное целое число. Автокорреляция может быть измерена коэффициентом автокорреляции:
,
где ,
– средний уровень ряда (x 1+L , x 2+L ,...,x n ),
средний уровень ряда (x 1 , x 2 ,..., x n-L),
s t , s t-L – средние квадратические отклонения, для рядов (x 1+L , x 2+L ,..., x n ) и (x 1 , x 2 ,..., x n-L ) соответственно.

Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L =1, то имеем коэффициент автокорреляции 1-ого порядка r t,t-1 , если L =2, то коэффициент автокорреляции 2-ого порядка r t,t- 2 и т.д. Следует учитывать, что с увеличением лага на единицу, число пар значений, по которым рассчитывается коэффициент автокорреляции уменьшается на 1. Поэтому обычно рекомендуют максимальный порядок коэффициента автокорреляции равный n /4.

Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (L), при котором автокорреляция (r t,t-L ) наиболее высокая, выявив тем самым структуру временного ряда .

  1. Если наиболее высоким оказывается значение коэффициента автокорреляции первого порядка r t,t- 1 , то исследуемый ряд содержит только тенденцию.
  2. Если наиболее высоким оказался коэффициент автокорреляции r t,t-L порядка L , то ряд содержит колебания периодом L .
  3. Если ни один из r t,t-L не является значимым, можно сделать одно из двух предположений:
    • либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;
    • либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.
Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой .

Для выявления закономерных колебаний внутри года при выполнении контрольной работы рекомендуется рассчитывать не меньше 4-х уровней коэффициентов автокорреляции.
Рассмотрим на примере как построить коррелограмму, чтобы определяется структуру временного ряда.
Пусть нам даны поквартальные данные об объеме выпуска некоторого товара некоторой фирмой –х (усл.ед.) за 3 года:


1993

1994

1995

1

2

3

4

1

2

3

4

1

2

3

4

410

560

715

500

520

740

975

670

705

950

1200

900

Чтобы построить коррелогорамму для нашего примера, исходный ряд динамики дополним рядами из уровней этого ряда, сдвинутыми во времени (таблица 6).
Таблица 6

t

1

2

3

4

5

6

7

8

9

10

11

12


х t

-

560

715

500

520

740

975

670

705

950

1200

900

r t,t-1 =0,537

x t-1

-

410

560

715

500

520

740

975

670

705

950

1200

х t

-

-

715

500

520

740

975

670

705

950

1200

900

r t,t-2 =0,085

х t-2

-

-

410

560

715

500

520

740

975

670

705

950

х t

-

-

-

500

520

740

975

670

705

950

1200

900

r t,t-3 =0,445

х t-3

-

-

-

410

560

715

500

520

740

975

670

705

х t

-

-

-

-

520

740

975

670

705

950

1200

900

r t,t-4 =0,990

х t-4

-

-

-

-

410

560

715

500

520

740

975

670

х t

-

-

-

-

-

740

975

670

705

950

1200

900

r t,t-5 =0,294

х t-5

-

-

-

-

-

410

560

715

500

520

740

975

Рассчитаем коэффициенты корреляции:
1-ого порядка для рядов х t и х t -1 ,
2-ого порядка для рядов х t и х t -2 ,
3-его порядка для рядов х t и х t -3 ,
4-ого порядка для рядов х t и х t -4,
5-ого порядка для рядов х t и х t -5

Результаты расчетов представлены в таблице 7.
Таблица 7


Лаг (порядок) – L

r t,t-L

Коррелограмма

1

0,537

****

2

0,085

*

3

0,445

***

4

0,990

*****

5

0,294

**

Вывод: в данном ряду динамики имеется тенденция (т.к. r t,t-1 =0,537 →1) и периодические колебания с периодом (L) равным 4, т.е. имеют место сезонные колебания (т.к. r t,t-4 =0,99 →1).

Построение модели временного ряда с сезонными колебаниями (аддитивная модель ).
Процесс построения модели временного ряда (х ), содержащего n уровней некоторого показателя за Z лет, с L сезонными колебаниями включает следующие шаги:
1) Выравнивание исходного ряда методом скользящей средней (х c ). Произведем выравнивание исходного ряда взятого из примера, рассмотренного выше, методом скользящей средней с периодом усреднения равным 3. Результаты представлены в таблице 9 (столбец 4).
2) Расчет значений сезонной составляющейS i , i=1;L , где L – число сезонов в году. Для нашего примера L =4 (сезоны - кварталы).
Расчет значений сезонных составляющих осуществляется после устранения тенденции из исходных уровней ряда: x-x c (столбец 5, таблица 9). Для дальнейшего расчета S i построим отдельную таблицу. Строки данной таблицы соответствуют сезонам, столбцы - годам. В теле таблицы находятся значения: x -x c . По этим данным рассчитываются средние оценки сезонных составляющих каждой строке (S c i) . Если сумма всех средних оценок равна нулю (), то данные средние и будут окончательными значениями сезонных составляющих (S i =S c i ). Если их сумма не равна нулю, то рассчитываются скорректированные значения сезонных составляющих вычитанием из средней оценки величины равной отношению суммы средних оценок к их общему числу (). Для нашего примера расчет значений S i представлен в таблице 8.
Таблица 8


Номер сезона

Год 1

Год 2

Год 3

Средняя оценка сезонной составляющей

Скорректированная оценка сезонной составляющей S i

1

-

-66,67

-70,00

-68,33

-67,15

2

-1,67

-5,00

-1,67

-2,78

-1,60

3

123,33

180 ,00

183,33

162,22

163,40

4

-78,33

-113,33

-

-95,83

-94,66

Итого




-4, 72

0

3) Устранение влияния сезонной составляющей из исходного ряда динамики : x S = x-S i . Результаты расчета x S для нашего примера представлены в столбце 6 таблицы 9.
4) Аналитическое выравнивание уровней x S (построение тренда): .
Расчет параметров при аналитическом выравнивании чаще всего производится с помощью метода наименьших квадратов (МНК). При этом поиск параметров для линейного уравнения тренда можно упростить, если отсчет времени производить так, чтобы сумма показателей времени изучаемого ряда динамики была равна нулю. Для этого вводится новая условная переменная времени t y , такая, что åt y =0. Уравнение тренда при этом будет следующим: .
При нечетном числе уровней ряда динамики для получения å t y =0 уровень, находящийся в середине ряда, принимается за условное начало отсчета времени (периоду или моменту времени, соответствующему данному уровню присваивается нулевое значение). Даты времени, расположенные левее этого уровня, обозначаются натуральными числами со знаком минус (-1 –2 –3 ...), а даты времени, расположенные правее этого уровня – натуральными числами со знаком плюс (1 2 3 ...).
Если число уровней ряда четное, периоды времени левой половины ряда (до середины) нумеруются –1, -3, -5 и т.д. А периоды правой половины - +1, +3, +5 и.т.д. При этом åt y будет равна 0.
Система нормальных уравнений (соответствующих МНК) преобразуется к виду:

Отсюда параметры уравнения рассчитываются по формулам:
.
Интерпретация параметров линейного уравнения тренда :
- уровень ряда за период времени t у =0;
- средний абсолютный прирост уровня ряда за единичный промежуток времени.
В нашем примере четное число уровней ряда: n=12. Следовательно, условная переменная времени для 6-ого элемента ряда будет равна –1, а для 7-ого +1. Значения переменной i y содержатся во 2-ом столбце таблицы 9.
Параметры линейного тренда будут: =14257,5/572=24,93; =8845/12=737,08. Это значит, что с каждым кварталом объем выпуска товара в среднем увеличивается на 2∙28,7 усл.ед. А средний за период с 1993 по 1995гг объем выпуска составил 738,75 усл.ед.
Рассчитаем значения трендовой компоненты по формуле (столбец 7 таблицы 9).
5) Учет сезонной составляющей в выровненных уровнях ряда (=T+S ). Результаты расчета для нашего примера представлены в столбце 8 таблицы 9.
6) Расчет абсолютной ошибки временного ряда (Е= x- ) осуществляется для оценки качества полученной модели. Результаты расчета для нашего примера представлены в столбце 9 таблицы 9.
Таблица 9

T

t у

x

x c

x- x c

x s

T


E

1

2

3

4

5

6

7

8

9

1

-11

410

-

-

477,15

462,9 0

395,75

14,25

2

-9

560

561,67

-1,67

561,60

512,75

511,15

48,85

3

-7

715

591,67

123,33

551,60

562,60

726,00

-11,01

4

-5

500

578,33

-78,33

594,65

612,45

517,80

-17,80

5

-3

520

586,67

-66,67

587,15

662,31

595,15

-75,15

6

-1

740

745 ,00

-5 ,00

741,60

712,16

710,56

29,44

7

1

975

795 ,00

180 ,00

811,60

762,00

925,41

49,59

8

3

670

783,33

-113,33

764,65

811,86

717,21

-47,21

9

5

705

775 ,00

-70 ,00

772,15

861,71

794,56

-89,56

10

7

950

951,67

-1,67

951,60

911,56

909,97

40,03

11

9

1200

1016,67

183,33

1036, 60

961,41

1124,82

75,18

12

11

900

-

-

994,65

1011,27

916,61

-16,61

Итого


8845



8845 ,00

8845 ,00

8845 ,00

16,61

Значимость параметров линейного уравнения тренда (Т ) определяется на основе t -критерия Стьюдента также как и в линейном парном регрессионном анализе.

Прогнозирование по аддитивной модели .
Пусть требуется дать прогноз уровня временного ряда на период (n +1). Точечный прогноз значения уровня временного ряда х n+1 в аддитивной модели есть сумма трендовой компоненты и сезонной компоненты (соответствующей i –ому сезону прогноза): =T n+1 +S i .
Для построения доверительного интервала прогноза нужно рассчитать среднюю ошибку прогноза:
m р = ,
где h - число параметров в уравнении тренда;
t yp – значение условной переменной времени для периода прогнозирования.
Затем рассчитаем предельную ошибку прогноза: D р =t a · m р ,
где t a - коэффициент доверия, определяемый по таблицам Стьюдента по уровню значимости α и числу степеней свободы равным (n-h ).
Окончательно получим: (-D р; +D р).

Ответы на экзаменационные билеты по эконометрике Яковлева Ангелина Витальевна

70. Компоненты временного ряда

Временным рядом называется ряд наблюдаемых значений изучаемого показателя, расположенных в хронологическом порядке или в порядке возрастания времени.

Отдельно взятый временной ряд можно представить как выборочную совокупность из бесконечного ряда значений показателей во времени.

Уровнями временного ряда называются наблюдения

из которых состоит данный ряд.

Временной ряд называется моментным рядом , если уровень временного ряда фиксирует значение изучаемого показателя на определённый момент времени.

Временной ряд называется интервальным рядом , если уровень временного ряда характеризует значение показателя за определённый период времени.

Временной ряд называется производным рядом , если уровни ряда представлены в виде производных величин (средних или относительных показателей).

Исследование данных, представленных в виде временных рядов, преследует две основные цели:

1) характеристика структуры временного ряда;

2) прогнозирование будущих уровней временного ряда на основании прошлых и настоящих уровней.

Достижение поставленных целей возможно с помощью идентификации модели временного ряда.

Идентификацией модели временного ряда называется процесс выявления основных компонент, которые содержит изучаемый временной ряд.

Временные ряды могут содержать два вида компонент – систематическую и случайную составляющие.

Систематическая составляющая временного ряда является результатом воздействия постоянно действующих факторов.

Выделяют три основных систематических компоненты временного ряда:

2) сезонность;

3) цикличность.

Трендом называется систематическая линейная или нелинейная компонента, изменяющаяся во времени.

Сезонностью называются периодические колебания уровней временного ряда внутри года.

Цикличностью называются периодические колебания, выходящие за рамки одного года. Промежуток времени между двумя соседними вершинами или впадинами в масштабах года определяют как длину цикла.

Систематические составляющие характеризуются тем, что они могут одновременно присутствовать во временном ряду.

Случайной составляющей называется случайный шум или ошибка, которая воздействует на временной ряд нерегулярно.

К основным причинам, по которым возникает случайный шум, относят факторы резкого и внезапного действия, а также действия текущих факторов.

Катастрофическими колебаниями называется случайный шум, в основе возникновения которого лежат факторы резкого и внезапного действия.

Шум, в основе возникновения которого лежит действие текущих факторов, может быть связан также с ошибками наблюдений.

Отдельный уровень временного ряда обозначается как yt. Его можно представить в виде функции от основных компонент временного ряда следующим образом:

yt=f(T,S,C,?),

где T – это трендовая компонента,

S – это сезонная компонента,

C – это циклическая компонента,

? – случайный шум.

Существует несколько основных моделей временных рядов, к которым относятся:

1) аддитивная модель временного ряда, в которой компоненты представляют собой слагаемые:

yt=Tt+St+Ct+?t;

2) мультипликативная модель временного ряда, в которой компоненты представляют собой сомножители:

yt=Tt*St*Ct*?t;

3) комбинированная модель временного ряда:

yt=Tt*St*Ct+?t.

Из книги Самоучитель езды на автомобиле автора Геннингсон Михаил Александрович

3. Движение с перестроением из ряда в ряд Данный маневр требует от водителя повышенного внимания. При этом должны быть выполнены два условия. Надо:* Уступить дорогу транспортному средству, движущемуся в своем ряду. * Подать предупредительный сигнал. Рассмотрим несколько

Из книги Энциклопедия пикапа. Версия 12.0 автора Олейник Андрей

Основные модификации модельного ряда Ну как, сходили? Понравилось? Только честно, понравилось или нет? Ладно, верю, верю. Хотя смотрите, может еще не поздно все остановить? В конце концов, вокруг так много симпатичных парней... Да шучу я, шучу, немного их, на самом-то деле. Ну,

Из книги Большая Советская Энциклопедия (ВЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЖИ) автора БСЭ

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Строительство временного жилища Сооружение временного жилища, защита от высоких и низких температур, солнечной радиации, ветра и т. д. – первоочередная задача, которую необходимо решать немедленно, как только минует непосредственная угроза для жизни людей после

Из книги Ответы на экзаменационные билеты по эконометрике автора Яковлева Ангелина Витальевна

76. Сезонные и циклические компоненты временного ряда Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:1) метод

Из книги Наградная медаль. В 2-х томах. Том 2 (1917-1988) автора Кузнецов Александр

79. Методы фильтрации временного ряда Методы фильтрации временных рядов предназначены на решение проблем, возникающих при исследовании взаимосвязи между двумя и более временными рядами, с помощью исключения из них трендовой и сезонной компонент.К проблемам, которые

Из книги Энциклопедия юриста автора

80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции Временной ряд является нестационарным, если он содержит такие систематические составляющие как тренд и цикличность.Нестационарные временные ряды

Из книги Как разобраться в ЖКХ и не переплачивать автора Шефель Ольга Михайловна

82. Линейные модели стационарного временного ряда Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.К основным линейным моделям стационарных временных

Из книги Закон подлости и другие законы автора Душенко Константин Васильевич

Из книги Что делать в экстремальных ситуациях автора Ситников Виталий Павлович

Изоляторы временного содержания ИЗОЛЯТОРЫ ВРЕМЕННОГО СОДЕРЖАНИЯ - места, предназначенные для содержания под стражей задержанных по подозрению в совершении преступлений. В И.в.с. в случаях, предусмотренных законодательством, могут временно содержаться подозреваемые и

Из книги автора

Склады временного хранения см. Временное хранение.

Из книги автора

Из книги автора

Метазаконы, или законы высшего ряда ВСЯКОЕ ОБОБЩЕНИЕ ЛОЖНО, ВКЛЮЧАЯ И ЭТО.«Первая аксиома формальной логики»АБСОЛЮТНОЙ ИСТИНЫ НЕ СУЩЕСТВУЕТ – ТАКОВА АБСОЛЮТНАЯ ИСТИНА.Дэвид ДжерролдМОЖНО БЫТЬ УВЕРЕННЫМ ЛИШЬ В ТОМ, ЧТО НИ В ЧЕМ НЕЛЬЗЯ БЫТЬ УВЕРЕННЫМ.Плиний

Из книги автора

Пребывание в изоляторе временного содержания (ИВС) Переступив порог камеры, помните: вы теперь один, и рассчитывать теперь вам придется только на себя, поэтому мобилизуйтесь. Не удивляйтесь и не паникуйте, что в течение нескольких ближайших дней вас не вызывают

Временной ряд

Временно́й ряд (или ряд динамики) - собранный в разные моменты времени статистический материал о значении каких-либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом, также допустимо называть его уровнем на указанный с ним момент времени. Во временном ряде каждому отчету должно быть указано время измерения или номер измерения по порядку. Временной ряд существенно отличается от простой выборки данных , так как при анализе учитывается взаимосвязь измерений со временем, а не только статистическое разнообразие и статистические характеристики выборки .

Анализ временных рядов

Ана́лиз временны́х рядо́в - совокупность математико -статистических методов анализа , предназначенных для выявления структуры временных рядов и для их прогнозирования . Сюда относятся, в частности, методы регрессионного анализа . Выявление структуры временного ряда необходимо для того, чтобы построить математическую модель того явления, которое является источником анализируемого временного ряда. Прогноз будущих значений временного ряда используется для эффективного принятия решений.

Пример временного ряда

Временные ряды состоят из двух элементов:

  • периода времени, за который или по состоянию на который приводятся числовые значения;
  • числовых значений того или иного показателя, называемых уровнями ряда.

Временные ряды классифицируются по следующим признакам:

Примеры временных рядов

Временные ряды, как правило, возникают в результате измерения некоторого показателя. Это могут быть как показатели (характеристики) технических систем, так и показатели природных, социальных, экономических и других систем (например, погодные данные). Типичным примером временного ряда можно назвать биржевой курс, при анализе которого пытаются определить основное направление развития (тенденцию или тренда).

Примечания

Литература

  • Мишулина О. А. Статистический анализ и обработка временных рядов. - М .: МИФИ , 2004. - С. 180. - ISBN 5-7262-0536-7

См. также


Wikimedia Foundation . 2010 .

  • Семейство рецепторов липопротеинов низкой плотности
  • Вудворд, Вивьен Джон

Смотреть что такое "Временной ряд" в других словарях:

    временной ряд - — временной ряд ряд динамики динамический ряд Ряд последовательных значений, характеризующих изменение показателя во времени. В.р. разделяются, во первых, на моментные ряды… … Справочник технического переводчика

    Временной ряд - (или ряд динамики, или динамический ряд) ряд последовательных значений, характеризующих изменение показателя во времени. В.р. разделяются, во первых, на моментные ряды (данные которых характеризуют величину явления по состоянию на… … Экономико-математический словарь

    временной ряд - – это последовательность наблюдений, упорядоченных во времени (или пространстве). Если какое нибудь явление наблюдают на протяжении некоторого времени, имеет смысл представить данные в том порядке, в котором они возникали, из за того, в… … Словарь социологической статистики

    ВРЕМЕННОЙ РЯД - англ. series, time; нем. Zeitreihe. Сопоставление количественных данных, к рые характеризуют состояние объекта в различные моменты времени. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    ВРЕМЕННОЙ РЯД - Упорядочение или организация данных во временном измерении, обычно с обозначенными постоянными временными категориями. Например, изменения некоторой модели поведения могут быть закодированы во временном измерении, когда наблюдения проводятся… … Толковый словарь по психологии

    временной ряд - laikinė seka statusas T sritis automatika atitikmenys: angl. temporal series; time sequence vok. Zeitfolge, f; Zeitsequenz, f rus. временная последовательность, f; временной ряд, m pranc. séquence de temporisation, f … Automatikos terminų žodynas

    ВРЕМЕННОЙ РЯД - первоначально в статистич. литературе ряд наблюдений в различные моменты времени (напр., экономические В. р., метеорологические В. р.). В советской экономич. литературе наряду с термином В. р. употребляется термин ряд динамики. С середины 20 х гг … Математическая энциклопедия

    Временной ряд - организация данных во временном измерении. Позволяет выявлять колебания активности функции. Например, циркадианные (суточные) и иные ритмы … Энциклопедический словарь по психологии и педагогике

    ВРЕМЕННОЙ РЯД - англ. series, time; нем. Zeitreihe. Сопоставление количественных данных, к рые характеризуют состояние объекта в различные моменты времени … Толковый словарь по социологии

    ВРЕМЕННОЙ РЯД - (times series) в идеале совокупность данных, в которой четко определенное количество записывается в последовательных равных промежутках времени точках на протяжении определенного периода (К. Марш, 1988), в частности, индекс розничных цен. Там,… … Большой толковый социологический словарь

Книги

  • Основы эконометрического моделирования. Учебное пособие , Л. О. Бабешко. В настоящее пособие включены классические регрессионные модели (линейные и нелинейные), обобщенные регрессионные модели, регрессионные модели с фиктивными переменными, регрессионные модели с…

Реальные данные часто содержат все три компоненты. В большинстве случаев временной ряд можно представить как сумму или произведение трендовой , циклической и случайной компонент. В случае суммы имеет место аддитивная модель временного ряда:

(1)

в случае произведения – мультипликативная модель:

. (2)

Основная задача эконометрического исследования отдельного временного ряда – выявление количественного выражения каждой из компонент и использование полученной информации для прогноза будущих значений ряда или построение модели взаимосвязи двух или более временных рядов.

Сначала рассмотрим основные подходы к анализу отдельного временного ряда. Такой ряд может содержать, помимо случайной составляющей, либо только тенденцию, либо только сезонную (циклическую) компоненту, либо все компоненты вместе. Для того, чтобы выявить наличие той или иной неслучайной компоненты, исследуется корреляционная зависимость между последовательными уровнями временного ряда, или автокорреляция уровней ряда. Основная идея такого анализа заключается в том, что при наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих.

Количественно автокорреляцию можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Коэффициент автокорреляции уровней ряда первого порядка измеряет зависимость между соседними уровнями ряда и т.е. при лаге 1.

Он вычисляется по следующей формуле:

(3)

где в качестве средних величин берутся значения:

(4)

В первом случае усредняются значения ряда, начиная со второго до последнего, во втором случае - значения ряда с первого до предпоследнего.

Формулу (3) можно представить как формулу выборочного коэффициента корреляции:

(5)

где в качестве переменной берется ряд а в качестве переменной ряд

Если значение коэффициента (3) близко к единице, это указывает на очень тесную зависимость между соседними уровнями временного ряда и о наличии во временном ряде сильной линейной тенденции.

Аналогично определяются коэффициенты автокорреляции более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

(6)

где в качестве одной средней величины берут среднюю уровней ряда с третьего до последнего, а в качестве другой - среднюю с первого уровня до

(7)

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Для обеспечения статистической достоверности максимальный лаг, как считают некоторые известные эконометристы, не должен превышать четверти общего объема выборки.

Коэффициент автокорреляции строится по аналогии с линейным коэффициентом корреляции, и поэтому он характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По нему можно судить о наличии линейной или близкой к линейной тенденции. Однако для некоторых временных рядов с сильной нелинейной тенденцией (например, параболической или экспоненциальной), коэффициент автокорреляции уровней ряда может приближаться к нулю.

Кроме того, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных имеют положительную автокорреляцию уровней, однако при этом не исключается убывающая тенденция.

Последовательность коэффициентов автокорреляции уровней различных порядков, начиная с первого, называется автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой. Анализ автокорреляционной функции и коррелограммы помогает выявить структуру ряда. Здесь уместно привести следующие качественные рассуждения.

Если наиболее высоким является коэффициент автокорреляции первого порядка, очевидно, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка τ , ряд содержит циклические колебания с периодичностью в τ моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, то либо ряд не содержит тенденции и циклических колебаний и имеет только случайную составляющую, либо ряд содержит сильную нелинейную тенденцию, для исследования которой нужно провести дополнительный анализ.

Пример . Пусть имеются данные об объёмах потребления электроэнергии жителями района за 16 кварталов, млн. квт.-ч:

t
y t 6,0 4,4 5,0 9,0 7,2 4,8 6,0 10,0 8,0 5,6 6,4 11,0 9,0 6,6 7,0 10,8

Нанесем эти значения на график:

Определим автокорреляционную функцию данного временного ряда. Рассчитаем коэффициент автокорреляции первого порядка. Для этого определим средние значения:

С учетом этих значений можно построить вспомогательную таблицу:

t y t
6,0 -1,0667 1,137778
4,4 -2,9867 -2,6667 3,185778 8,920178 7,111111
5,0 -2,3867 -2,0667 6,364444 5,696178 4,271111
9,0 1,6133 1,9333 -3,33422 2,602844 3,737778
7,2 -0,1867 0,1333 -0,36089 0,034844 0,017778
4,8 -2,5867 -2,2667 -0,34489 6,690844 5,137778
6,0 -1,3867 -1,0667 3,143111 1,922844 1,137778
10,0 2,6133 2,9333 -2,78756 6,829511 8,604444
8,0 0,6133 0,9333 1,799111 0,376178 0,871111
5,6 -1,7867 -1,4667 -1,66756 3,192178 2,151111
6,4 -0,9867 -0,6667 1,447111 0,973511 0,444444
11,0 3,6133 3,9333 -2,40889 13,05618 15,47111
9,0 1,6133 1,9333 6,345778 2,602844 3,737778
6,6 -0,7867 -0,4667 -1,52089 0,618844 0,217778
7,0 -0,3867 -0,0667 0,180444 0,149511 0,004444
10,8 3,4133 -0,22756 11,65084
Итог 9,813333 65,3173 54,0533

С помощью итоговых сумм подсчитаем величину коэффициента автокорреляции первого порядка:

.

Это значение свидетельствует о слабой зависимости текущих уровней ряда от непосредственно им предшествующих. Однако из графика очевидно наличие возрастающей тенденции уровней ряда, на которую накладываются циклические колебания.

Продолжая аналогичные расчеты для второго, третьего и т.д. порядков, получим автокорреляционную функцию, значения которой сведем в таблицу и построим по ней коррелограмму:

Лаг
0,16515 0,56687 0,11355 0,98302 0,11871 0,72204 0,00336 0,97384


Из коррелограммы видно, что наиболее высокий коэффициент корреляции наблюдается при значении лага, равном четырем, следовательно, ряд имеет циклические колебания периодичностью в четыре квартала. Это подтверждается и графическим анализом структуры ряда.

В случае, если при анализе структуры временного ряда обнаружена только тенденция и отсутствуют циклические колебания (случайная составляющая присутствует всегда), следует приступать к моделированию тенденции. Если же во временном ряде имеют место и циклические колебания, прежде всего следует исключить именно циклическую составляющую, и лишь затем приступать к моделированию тенденции. Выявление тенденции состоит в построении аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда . Этот способ называют аналитическим выравниванием временного ряда .

Зависимость от времени может принимать разные формы, поэтому для её формализации используют различные виды функций:

Линейный тренд: ;

Гипербола: ;

Экспоненциальный тренд: (или );

Степенной тренд: ;

Параболический тренд второго и более высоких порядков:

Параметры каждого из трендов можно определить обычным МНК, используя в качестве независимой переменной время , а в качестве зависимой переменной – фактические уровни временного ряда y t (или уровни за вычетом циклической составляющей, если таковая была обнаружена). Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. Чаще всего используют качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни y t и y t -1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и выбора уравнения тренда с максимальным значением этого коэффициента. Реализация этого метода относительно проста при компьютерной обработке данных.

При анализе временных рядов, содержащих сезонные или циклические колебания, наиболее простым подходом является расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временнóго ряда в форме (1) или (2).

Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель (1), в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель (2), которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение модели (1) или (2) сводится к расчету значений Т , S или Е для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги:

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты S .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (Т+Е ) в аддитивной или (Т·Е ) в мультипликативной модели.

4. Аналитическое выравнивание уровней (Т+Е ) или (Т·Е ) и расчет значений Т с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений (Т+S ) или (Т·S )

6. Расчет абсолютных и относительных ошибок.

Пример . Построение аддитивной модели временного ряда . Рассмотрим данные об объёме потребления электроэнергии жителями района из ранее приведенного примера. Из анализа автокорреляционной функции было показано, что данный временнóй ряд содержит сезонные колебания периодичностью в 4 квартала. Объёмы потребления электроэнергии в осенне – зимний период (I и IV кварталы) выше, чем весной и летом (II и III кварталы). По графику этого ряда можно установить наличие приблизительно равной амплитуды колебаний. Это говорит о возможном наличии аддитивной модели. Рассчитаем её компоненты.

Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней.

Поскольку циклические колебания имеют периодичность в 4 квартала, просуммируем уровни ряда последовательно за каждые 4 квартала со сдвигом на один момент времени и определим условные годовые объёмы потребления электроэнергии (колонка 3 в таблице 1).

Разделив полученные суммы на 4, найдем скользящие средние (колонка 4 таблицы 1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

Поскольку скользящие средние получены осреднением четырех соседних уровней ряда, т.е. четного числа значений, они соответствуют серединам подынтервалов, состоящих из четверок чисел, т.е. должны располагаться между третьим и четвертым значениями четверок исходного ряда. Для того, чтобы скользящие средние располагались на одних временных отметках с исходным рядом, пары соседних скользящих средних ещё раз усредняются и получаются центрированные скользящие средние (колонка 5 таблицы 1). При этом теряются первые две и последние две отметки временного ряда, что связано с осреднением по четырем точкам.

Таблица 1

№ квартала Потребление электроэнергии y t Итого за четыре квартала Оценка сезонной компоненты
6,0
4,4
5,0 24,4 6,10 6,25 -1,250
9,0 25,6 6,40 6,45 2,550
7,2 26,0 6,50 6,625 0,575
4,8 27,0 6,75 6,875 -2,075
6,0 28,0 7,00 7,1 -1,100
10,0 28,8 7,20 7,3 2,700
8,0 29,6 7,40 7,45 0,550
5,6 30,0 7,50 7,625 -2,025
6,4 31,0 7,75 7,875 -1,475
11,0 32,0 8,00 8,125 2,875
9,0 33,0 8,25 8,325 0,675
6,6 33,6 8,40 8,375 -1,775
7,0 33,4 8,35
10,8

Шаг 2 . Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда (колонка 2 таблицы 1) и центрированными скользящими средними (колонка 5). Эти значения помещаем в колонку 6 таблицы 1 и используем для расчета значений сезонной компоненты (таблица 2), которые представляют собой средние за каждый квартал (по всем годам) оценки сезонной компоненты S i . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период (в данном случае – за год) взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем точкам (здесь – по четырем кварталам) должна быть равна нулю.

Таблица 2

Для данной модели сумма средних оценок сезонной компоненты равна:

0,6-1,958-1,275+2,708=0,075.

Эта сумма оказалась не равной нулю, поэтому каждую оценку уменьшим на величину поправки, равной одной четверти полученного значения:

Δ=0,075/4=0,01875.

Рассчитаем скорректированные значения сезонной компоненты (они записаны в последней строке таблицы 2):

(8)

Эти значения при суммировании уже равны нулю:

0,581-1,977-1,294+2,69=0.

Шаг 3 . Исключаем влияние сезонной компоненты, вычитая её значения из каждого уровня исходного временного ряда. Получаем величины:

T+E=Y-S (9)

Эти значения рассчитываются в каждый момент времени и содержат только тенденцию и случайную компоненту (колонка 4 следующей таблицы):

Таблица 3

t T T+S E 2
6,0 0,581 5,419 5,902 6,483 -0,483 0,2332
4,4 -1,977 6,377 6,088 4,111 0,289 0,0833
5,0 -1,294 6,294 6,275 4,981 0,019 0,0004
9,0 2,69 6,310 6,461 9,151 -0,151 0,0228
7,2 0,581 6,619 6,648 7,229 -0,029 0,0008
4,8 -1,977 6,777 6,834 4,857 -0,057 0,0032
6,0 -1,294 7,294 7,020 5,726 0,274 0,0749
10,0 2,69 7,310 7,207 9,897 0,103 0,0107
8,0 0,581 7,419 7,393 7,974 0,026 0,0007
5,6 -1,977 7,577 7,580 5,603 -0,003 0,0000
6,4 -1,294 7,694 7,766 6,472 -0,072 0,0052
11,0 2,69 8,310 7,952 10,642 0,358 0,1278
9,0 0,581 8,419 8,139 8,720 0,280 0,0785
6,6 -1,977 8,577 8,325 6,348 0,252 0,0634
7,0 -1,294 8,294 8,512 7,218 -0,218 0,0474
10,8 2,69 8,110 8,698 11,388 -0,588 0,3458

Шаг 4 . Определим трендовую компоненту данной модели. Для этого проведем выравнивание ряда (Т+Е ) с помощью линейного тренда:

, найдем уровни Т для каждого момента времени (колонка 5 таблицы 3).

Шаг 5 . Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням Т значения сезонной компоненты для соответствующих кварталов, т.е. к значениям в колонке 5 таблицы 3 прибавим значения в колонке 3. Результаты операции представлены в колонке 6 таблицы 3.

Шаг 6 . В соответствии с методикой построения аддитивной модели расчет ошибки производим по формуле:

(10)

Это абсолютная ошибка. Численные значения абсолютных ошибок приведены в колонке 7 таблицы 3.

По аналогии с моделью регрессии для оценки качества построения модели или для выбора наилучшей модели можно применять сумму квадратов полученных абсолютных ошибок. Для данной аддитивной модели сумма квадратов абсолютных ошибок равна 1,10. По отношению к общей сумме квадратов отклонений уровней ряда от его среднего уровня, равной 71,59, эта величина составляет чуть более 1,5%. Следовательно, можно сказать, что аддитивная модель объясняет 98,5% общей вариации уровней временного ряда потребления электроэнергии за последние 16 кварталов.

Пример . Построение мультипликативной модели временного ряда . Пусть имеются поквартальные данные о прибыли компании за последние четыре года:

Таблица 4

График временного ряда свидетельствует о наличии сезонных колебаний периодичностью 4 квартала и общей убывающей тенденции уровней ряда:



Прибыль компании в весенне-летний период выше, чем в осенне-зимний период. Поскольку амплитуда сезонных колебаний уменьшается, можно предположить существование мультипликативной модели. Определим её компоненты.

Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Методика, применяемая на этом шаге, полностью совпадает с методикой аддитивной модели. Результаты расчетов оценок сезонной компоненты представлены в таблице:

Таблица 5

№ квартала Прибыль компании Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
81,500 81,250 1,108
81,000 80,000 0,800
79,000 77,750 0,900
76,500 75,750 1,215
75,000 74,000 1,081
73,000 71,500 0,811
70,000 68,500 0,905
67,000 65,750 1,217
64,500 63,250 1,075
62,000 59,500 0,807
57,000 54,750 0,950
52,500 50,250 1,194
48,000

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (колонка 6 таблицы). Используем эти оценки для расчета значений сезонной компоненты S . Для этого найдем средние за каждый квартал оценки сезонной компоненты S i . Взаимопогашаемость сезонных воздействий в мультипликативной модели выражается в том, что сумма значений сезонной компоненты по всем кварталам должна равняться числу периодов в цикле. В нашем случае число периодов одного цикла (год) равно четырем кварталам. Результаты расчетов сведем в таблицу:

Таблица 6

Здесь сумма средних оценок сезонных компонент по всем четырем кварталам

не равна четырем. Чтобы эта сумма равнялась четырем, умножим каждое слагаемое на поправочный коэффициент

0,803 79,70 79,48 63,82 1,003 0,179 0,03 0,913 76,67 76,70 70,03 1,000 -0,030 0,00 1,202 76,54 73,93 88,86 1,035 3,139 9,85 1,082 73,94 71,15 76,99 1,039 3,013 9,08 0,803 72,23 68,38 54,91 1,056 3,093 9,57 0,913 67,91 65,60 59,90 1,035 2,105 4,43 1,202 66,56 62,83 75,52 1,059 4,482 20,08 1,082 62,85 60,05 64,98 1,047 3,024 9,14 0,803 59,78 57,28 45,99 1,044 2,007 4,03 0,913 56,96 54,50 49,76 1,045 2,240 5,02 1,202 49,92 51,73 62,18 0,965 -2,176 4,73 1,082 46,21 48,95 52,97 0,944 -2,966 8,79 0,803 37,36 46,18 37,08 0,809 -7,080 50,12

Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. Тем самым мы получим величины

, (12)

Шаг 4 . Определим трендовую компоненту в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни (Т+Е ). Уравнение тренда имеет вид:

Подставляя в это уравнение значения , найдем уровни Т для каждого момента времени (колонка 5 таблицы).

Шаг 5 . Найдем уровни ряда по мультипликативной модели, умножив уровни Т на значения сезонной компоненты для соответствующих кварталов (колонка 6 таблицы).

Шаг 6 . Расчет ошибок в мультипликативной модели произведем по формуле:

. (13)

Численные значения ошибок приведены в колонке 7 таблицы. Для того, чтобы сравнить мультипликативную модель и другие модели временного ряда, можно по аналогии с аддитивной моделью использовать сумму квадратов абсолютных ошибок. Абсолютные ошибки в мультипликативной модели определяются как:

. (14)

В данной модели сумма квадратов абсолютных ошибок составляет 207,4. Общая сумма квадратов отклонений фактических уровней этого ряда от среднего значения равна 5023. Таким образом, доля объясненной дисперсии уровней ряда составляет 95,9%.

Прогнозирование по аддитивной или мультипликативной модели временного ряда сводится к расчету будущего значения временного ряда по уравнению модели без случайной составляющей в виде

для аддитивной или

для мультипликативной модели.