История развития телекоммуникаций. История развития телекоммуникационных технологий

Каждый из направлений развития техники передачи сообщений (телефония, телеграфия, телевидение, звуковое вещание и т. д.) И устройств для их приема (телефоны, телеграфные аппараты, телевизоры, радиоприемники и т. д.) Имеет свою историю изобретения, создания и эксплуатации .

Известны имена многих изобретателей, но в ряде случаев трудно приписать кому-либо одному первенство. В 1792 г.. Была построена первая линия (225 км) семафорной передачи сигналов, что связала Париж и Лилль изобретатели братья К. и И. Шапп. Сигнал проходил весь путь за 2 мин. Прибор назывался «тахиграф» (буквально скорописец), а позже — «телеграф». Телеграф Шаппа был широко распространен в 19 в. В 1839-1854 гг. Действовала самая длинная в мире линия оптического телеграфа Петербург — Варшава (149 станций, 1200 км., 100 сигналов-символов передавались 35 мин).
Оптический телеграф различных конструкций был в эксплуатации около 60 лет, хотя и не обеспечивал (по погодным условиям) высокую надежность и достоверность. Открытие в области электричества способствовали тому, что постепенно телеграф из оптического превращался в электрический. В 1832 г.. российский ученый П. Л. Шиллинг продемонстрировал в Петербурге первый в мире практически пригодный электромагнитный телеграф. Первые подобные линии связи обеспечивали передачу 30 слов в минуту. Существенный вклад в эту область внесли американский изобретатель С. Морзе (в 1837 предложил код — азбуку Морзе), российский ученый Б. С. Якоби (в 1839 предложил буквопечатающий аппарат, в 1840р.- электрохимический способ записи), английский физик Д. Юз (в 1855 разработал оригинальный вариант электромеханического буквопечатающего аппарата), немецкий электротехник и предприниматель Э. Сименс (в 1844 усовершенствовал аппарат Б. С. Якоби), французский изобретатель Ж. Бодо (в 1874 предложил метод передачи нескольких сигналов по одной физической линии — временное уплотнение, на честь заслуг Бодо в 1927 г.. его именем названа единица скорости телеграфирования — бод), итальянский физик Дж. Казелли (в 1856 предложил способ фото телеграфирования и совершил его в России в 1866 на линии Петербург — Москва). В этом же году была завершена работа по прокладке первого кабеля через Атлантический океан. Впоследствии все материки были соединены несколькими подводными линиями, в частности волоконно-оптическими.

В 1876 г.. Американский изобретатель А. Г. Белл получил патент на первый практически пригодный телефонный аппарат, а в 1878 г.. В Нью-Хейвене (США) была введена первая телефонная станция. В России первые городские телефонные станции появились в 1882 г.. В Петербурге, Москве, Одессе и Риге. Автоматическая телефонная станция (АТС) с шаговым искателем создана в 1896 г.. в г. Огаста (США.). Изобретение усилителя электрических сигналов (в 1915 русским инженером В. И. Коваленковым) позволил увеличить дальность телефонной связи благодаря использованию промежуточных усилителей. К 1940-м гг. Были разработаны высокоселективные электрические фильтры, модуляторы, что открыло путь к созданию многоканальных систем передачи с частотным разделением каналов (до 10 тыс. и более), с использованием кабельных, радиорелейных и спутниковых линий связи. В 1940-х гг. были созданы координатные АТС, в 1960-х — квазиэлектронные, а в 1970-х появились первые образцы электронных АТС. В 1960-х гг. появились первые цифровые многоканальные системы передачи.

Развитие телефонии способствовал введению проводного вещания, в котором звуковые программы передаются по отдельным от телефонным проводам. Однопрограммное проводное вещание впервые было начато в Москве в 1925 г.. введением узла мощностью 40 Вт, обслуживающего 50 громкоговорителей, установленных на улицах. С 1962 г.. внедряется 3-программное проводное вещание, в котором две дополнительные программы передаются одновременно с первой методом амплитудной модуляции колебаний несущих с частотами 78 и 120 кГц. Ведутся исследовательские передачи дополнительных программ по телефонным сетям. За рубежом (Германия, Австрия, Италия, Швейцария) системы многопрограммного проводного вещания созданы в 1930-х гг. по телефонным сетям.

Важный шаг в истории электросвязи — изобретение радио А. С. Поповым в 1895 г.. и беспроволочного телеграфа Г. Маркони в 1896-97 гг. С тех пор началось использование электромагнитных волн все более высоких частотах для передачи сообщений. Это послужило толчком для организации радиовещания и появления радиовещательных приемников — первых бытовых радиоэлектронных аппаратов. Первые радиовещательные передачи начаты в 1919-20 гг. с Нижегородской радиолаборатории и из опытных радиовещательных станций Москвы, Казани и других городов. К этому же времени относится начало регулярных передач радиовещания в США (1920 г..) в Питтсбурге и Западной Европе (в 1922 в Лондоне). Регулярное вещание Московского радио на зарубежные страны началось с 1929 г.. на длинных, средних и коротких волнах методом амплитудной модуляции (AM) с двумя боковыми полосами и в УКВ-диапазоне методом частотной модуляции (ЧМ). В связи с теснотой в эфире начат постепенный переход к радиовещания с однополосной модуляцией и в области цифрового радиовещания, часть программ звукового вещания со спутников передается в цифровом виде.

В 1877-80 гг. предложены первые проекты систем механического телевидения М. Санлеком (Франция), де-Пайва (Португалия) и П. И. Бахметьев (Россия). Созданию телевидения способствовали открытия многих ученых и исследователей: А. Г. Столетов установил в 1888-90 гг. основные закономерности фотоэффекта; К. Браун (Германия) изобрел в 1897 электронно-лучевую трубку Ли де Форест (США) создал в 1906 г.. трехэлектродную лампу, существенный вклад внесли также Дж. Берд (Англия), Ч. Ф. Дженкинс (США) и Л. С. Термен (СССР), осуществивших первые проекты систем телевидения с механической разверткой течение 1925-26 гг. Началом ТВ — вещание в стране по системе механического телевидения на диск Нипкова (30 строк и 12.5 кадров / с) считается 1931 г. учитывая узкую полосу частот, занимаемую сигналом этой системы, сигнал передавался с помощью радиовещательных станций в диапазонах длинных и средних волн. Первые опыты по системе электронного телевидения были проведены в 1911 г.. российским ученым Б. Л. Розинг. Существенный вклад в становление электронного телевидения внесли также А. А. Чернышев, Ч. Ф. Дженкинс, А. П. Константинов, С. И. Катаев, В. К. Зворыкин, П. В. Шмаков, П. В. Тимофеев и Г. В. Брауде, предложивших оригинальные проекты различных передающих трубок. Это позволило создать в 1937 г.. первые в стране телецентры — в Ленинграде (на 240 строк) и Москве (на 343 строки, а с 1941 г.- на 441 строка). С 1948 г.. начато вещание по системе электронного телевидения с разложением на 625 строк и 50 полей / с, то есть по стандарту, который принят сейчас большинством стран мира (в США в 1940 г.. принятый стандарт на 525 строк и 60 полей / с).

Работы многих ученых и изобретателей по передаче цветных изображений (А. А. Полумордвинов предложил в 1899 первый проект цветной ТВ-системы, И. А. Адамиан в 1926 г.- трехцветный последовательную систему) явились основой для создания различных систем цветного телевидения. Для ТВ — вещания используются только три системы цветного телевидения: NTSC (вещания начато в США в конце 1953 г..), РАL и SECAM (в 1967 гг. практически одновременно во многих странах). ТВ — сигнал длительное время передавался только в аналоговом виде с помощью AM (звук — методом ЧМ) по открытому пространству или кабеля (в кабельном телевидении). Передача ТВ — сигналов в цифровом виде стала возможной с появлением транзисторов и интегральных микросхем. В настоящее время в ряде стран являются цифровые телецентры, в частности в Санкт-Петербурге. Будущее связывают с передачей ТВ — сигнала в цифровом виде от телецентра до абонентских цифровых телевизоров по распределительной сети на волоконно-оптическом кабеле.

Опытная система черно-белого и цветного стереотелевидения создана в 1960-70-х гг. коллективом под руководством П. В. Шмакова в Ленинграде. Он же впервые предложил использовать летательные аппараты для ретрансляции ТВ — радиосигналов. Внедрение стереотелевидения сдерживается в основном созданием эффективного, сравнительно дешевого и простого устройства отображения (экрана).
Выдающимся открытием 20 ст. является создание транзистора в 1948 г.. В. Шокли, У. Браттейном и Дж. Бардин, получивших Нобелевскую премию 1956 г. Успехи полупроводниковой электроники и особенно появление интегральных схем обусловили бурное развитие всех технических средств передачи сообщений электрическими средствами и соответствующих бытовых устройств для их приема. Кроме стационарных радиоприемников и телевизоров появились переносные и автомобильные и даже персональная карманная видеоаппаратура (Япония).

С 1969 г. начато освоение бытового магнитного видеозаписи (японский стандарт EIAJ) и выпуск видеомагнитофонов: с 1970 г.- форматов V-Matic, VCR, 1975 г.- Beta, VCR-LR и VHS, 1979 г.-Video-2000, 1981 г.- S-VHS, 1988 г.-Video-8. Появились первые профессиональные цифровые видеомагнитофоны, в том числе и для телевидения высокой четкости.

Значительные успехи в бытовом звукозаписи связанные с разработкой цифровых аппаратов: в 1977 г. фирмами Philips и Sony начата разработка цифровой пластинки — компакт-диска для воспроизведения на лазерном проигрывателе, в 1982 г. принят международный стандарт на систему; в 1981 и 1982 (Япония) разработаны два стандарта записи для бытовых цифровых магнитофонов R-DAT и S-DAT; в 1984 году (Япония) разработан стандарт E-DAT для цифрового звукового диска, что стирается.

Последнее десятилетие 20 в. полно открытиями новых принципов записи, систем передачи, способов повышения качества воспроизведения изображения и звука. Развитие интегральной схемотехники способствовал внедрению спутникового телевидения, цифровых методов, телевидения повышенного качества (ТПК) и высокой четкости (ТВЧ). Оригинальная система ТПК для передачи сжатых во времени аналоговых компонентных сигналов цветного телевидения предложена в Англии (стандарт MAC и его разновидности) и широко используется в спутниковой ТВ — вещании. В Европе предлагается вести ТВЧ — вещание в стандарте HD-MAC. В Японии уже ведутся 8-часовые ежедневные передачи через спутник программ ТВЧ по системе MUSE.

Настоящая революция произошла и в технике передачи оптических сигналов — началось использование полупроводниковых лазерных диодов и волоконных световодов. Волоконно-оптические системы передачи (ВОСП) открыли новую эру в технике связи по направляющим линиям: экспериментальная ВОСП обеспечивает передачу 32 телепередач в цифровом виде на расстояние более 100 км без единого усилителя.

Развитие информационных сетей идет по пути освоения более высокочастотных диапазонов в спутниковом телевидении; перехода на цифровые методы передачи, приема, коммутации и создание цифровой сети интегрального обслуживания — ЦСИО (Intergrated Service Digital Network — ISDN) и даже широкополосной ЦСИО (Broadband ISDN) с волоконно-оптическим кабелем в качестве среды передачи. Сигнал к абоненту поступает: по открытому пространству на радиовещательные приемники, телевизоры и приемной установки спутникового телевидения, по кабелю (преимущественно коаксиальному) в системах кабельного телевидения; по проводным сетям в звуковом вешания; по телефонным линиям. Система же ЦСИО по одному и тому же каналу передает речь, данные для ЭВМ, информацию факсимиле, изображения. Кроме того, расширяются виды информационных услуг абоненту, запрос и обмен необходимой информацией. В развитых странах Европы, в США и Японии внедрения ЦСИО идет примерно с 1987-89 гг.

Прогресс в развитии средств связи и вычислительной техники привел к переходу в промышленно развитых странах от общества индустриального к обществу информационному. В Японии план создания информационного общества объявлен «национальной целью», а компания NTT сформулировала новый подход к службам связи 21 века, получивший название службы VI & P. Ее составляющими являются: видеотелефоны и другие службы связи (V), интеллектуальная электронная почта (I) и персональные мобильные телефоны (Р). NTT планирует обеспечения этой службой всей территории страны аналогично привычной телефонной сети.

В МККТТ сформировалось новое понятие — интеллектуальная сеть ИС (Intelligent Network), отличительным признаком которой является быстрое, эффективное и экономное предоставление информационных услуг массовому пользователю в любой момент времени. Каждый пользователь ИС, обращаясь через коммутируемую сеть связи (КСС), заказывает себе ту или иную услугу в базе данных, которая предоставляет ему эту услугу обратно через КСС. Таким образом, бытовая РЭА и ПЭВМ постоянно совершенствоваться, и на их основе, вероятно, появятся универсальные (многофункциональные) бытовые терминалы.

Телекоммуникационные технологии играют огромную роль во всех без исключения сферах современного общества. Эта роль особенно возрастает при решении задач современного этапа развития страны, когда от скорости, качества и своевременной передачи информации зависит правильность принятия стратегически важных решений, как на уровне регионов, так и отдельных субъектов экономических отношений. Кроме того, телекоммуникационные системы исключительно важны в передаче и доведении до каждого члена общества политической, общественной, культурной, образовательной и другой информации. Отрасль связи выполняет важнейшую государственную функцию передачи информации для обеспечения политической и экономической безопасности страны, жизнедеятельности людей, общественного производства, управления на всех иерархических и территориальных уровнях.

Анализируя современный телекоммуникационный рынок нашей страны можно выделить несколько этапов его формирования. Основой сложившейся структуры по праву можно считать процесс либерализации рынка телекоммуникаций. До начала этой либерализации, как и большинство отраслей в советской экономике, отрасль телекоммуникаций была монополизирована. Принципы реформирования были определены Постановлением Правительства РФ от 22 декабря 1992 г. № 1003 «О приватизации предприятий связи» и концепцией программы Российской Федерации в области связи, одобренной Советом Министров – Правительством Российской Федерации (протокол № 11 от 25 марта 1993 г.). В результате реформы Министерство Российской Федерации по связи и информатизации перестало быть собственником сетей и предприятий связи и прекратило выполнять хозяйственные функции в области связи, сохранив за собой функции государственного регулирования в отрасли. К ним относятся: реализация государственной политики в отрасли «Связь и информатизация», проведение научно-технической политики, осуществление контроля над развитием рынков услуг связи и оборудования связи, стимулирование развития этих рынков, координация деятельности операторов связи, прогнозирование развития сетей связи, формирование и защита информационных ресурсов страны и т. д.

Рынок информационных услуг как вид бизнеса окончательно сложился в середине 80-х годов. На его становление наибольшее воздействие оказали следующие технологические достижения:- персональные компьютеры- совершенствование технологий сетевого доступа- host-ЭВМ функционирующие в режиме разделения времени с большим объемом памяти- развитие телекоммуникационных сетей- электронная почта- передача факсимильных изображений В настоящее время на рынке интерактивных услуг сформировать разделения труда между организациями, выполняющими функции создания, разработки, обеспечения доступа, получения информации. Классификация структуры рынка (наиболее распространенная)1. Производители - это организации, осуществляющие сбор информации и перевод ее в машиночитаемую форму2. Интерактивные службы - это организации, осуществляющие интерактивный доступ к БД, т.е. разрабатывающие и эксплуатирующие (основные элементы рынка)3. Шлюзы (межсистемные интерфейсы) - это организации, предоставляющие доступ к другим БД (пользователю предоставляется возможность работы с коммутационным процессом), при помощи которых осуществляется поиск необходимых ему БД, а иногда и работу с ними.4. Телекоммуникационные службы - предприятия связи.5. Пользователи, которые в свою очередь делятся на конечных и промежуточных (посредников), оказывающих своим клиентам услуги по информационному поиску. В состав последних входят библиотеки, информационные центры, а так же брокеры специалисты профессионалы, занимающихся платным обслуживанием клиентов. Наряду с указанной диверсификацией существует тенденция к концентрации и централизации. Наиболее она заметна в вертикальной интеграции, которая подразумевает превращение разрозненных информационных продуктов и услуг, предоставляемых отдельными компаниями в комплексную ассортиментную линию связывающую в единое целое различные области информационного бизнеса в рамках одной компании. Высшей формой интеграции является образование интегрированных информационных цепей, предоставляющих технические средства (ТС), передачу и сами данные в виде единых услуг так называемая СИС –технология (стратегические информационные услуги). Анализ слияний, поглощений охватывающих рынок в конце 80-х показал, что они носили стратегически, а не спекулятивный характер, направленный на расширение рынка интерактивных услуг, поскольку пользователь получает ощутимое преимущество от повышения совместимости различных систем (хотя вертикальная интеграция препятствует понижению цен). В целом индустрия интерактивных услуг – прибыльный вид деятельности. Отечественная индустрия не столь развита как на западе. Это объясняется историческими условиями, в которых происходило их формирование.1. Это централизованное управление и низкий уровень рыночных связей. В результате чего спрос на информационные услуги (ИУ) неизбежно ограничивался, т.к. был направлен не на финансово-экономическую, а на научно-техническую информацию.2. Высокая цена на технические средства относительно заработной платы.3. Слабое развитие телекоммуникаций, главным образом из-за дефицита каналов и сетевого оборудования. Отечественная индустрия ИУ развивалась как система некоммерческих информационных ресурсов, часто объединенных в ведомственные сети. С середины 80-х годов идет активная коммерциализация и постепенно складывающаяся структура, похожая на международную. Еще одна особенность отечественной индустрии интерактивных услуг – долгое время ключевыми моментами были не интерактивные, а телекоммуникационные службы. Основные виды пользователей:1. информационные специалисты, производящие поиск в интересах своих организаций;2. научные работники;3. административные работники.

Зато, в 2006 г. впервые за всю историю мобильной связи в России начался рост среднего дохода операторов на абонента (ARPU). А ведь еще 3 года назад тенденция была прямо противоположная – выручка компаний в пересчете на абонента постоянно сокращалась.



Причины увеличения ARPU:

Переход на новую систему расчетов между операторами фиксированных и сотовых сетей после введения с 1 июля 2006 г. принципа "Платит звонящий" (Calling Party Pays, CPP). Региональные операторы, многие из которых прежде вообще не платили федералам за звонки своих абонентов на их сети, теперь стали это делать;

Пересмотр операторами тарифной политики после введения СРР;

Рост разговорной активности абонентов (MOU).

Несмотря на рост ARPU, средняя стоимость минуты разговора (APPM) в России снижается. По этому показателю Россия на одном из последних мест в мире (еще дешевле минута связи в Индии и Китае). Предел снижения этого показателя - стоимость межоператорского платежа за минуту, или $0,03, причем в некоторых регионах APPM сотовых компаний на середину 2007 г. уже столько и составлял.

По распространенности сотовых услуг Россия уже догнала Западную Европу. По данным AC&M, уровень ее проникновения по итогам 2007 г. достиг 119% увеличившись за год на 14.4 пункта и составил на конец года 172.9 млн. абонентов. Однако доля трат домашних хозяйств на мобильные услуги в России самая низкая из всех экономически развитых стран.

Хотя говорим мы с каждым годом все больше, по сравнению, например, с американцами российские абоненты сущие молчуны. Количество минут разговора на одного абонента в России меньше, чем в большинстве стран мира. По оценке Comnews Research, предел роста MOU - 1000 минут в месяц. Так что здесь нам есть куда расти, уверяют операторы, и вводят тарифы, стимулирующие абонентов говорить больше.

Доход от дополнительных услуг в России до сих пор в два раза ниже, чем в западных странах. В России доля неголосовых услуг в доходах компаний не превышает 12%. В странах Западной Европы эта доля колеблется на уровне 18%. Здесь тоже есть потенциал для роста. Операторы запускают все новые неголосовые услуги. Региональные операторы, вводят такие сервисы даже активнее, чем три российских лидера рынка - ВымпелКом, МТС и МегаФон. Рост потребления допуслуг - их основной источник увеличения доходов.

На заре становления человеческого общества общение между людьми было весьма скудным. Воткнутая в землю ветка указывала, в каком направлении, и на какое расстояние ушли люди; особо положенные камни предупреждали о появлении врагов; зарубки на палках или деревьях сообщали об охотничьей добыче и пр. Существовала и примитивная передача сигналов на расстояние. Сообщения, закодированные в виде определенного числа выкриков либо ударов барабана с изменяющимся ритмом, содержали ту или иную информацию.

В десятом томе “Всеобщей истории” древнегреческого историка Полибия (ок. 201–120 г. до н.э.) описан способ передачи сообщений на расстояние с помощью факелов (факельный телеграф), изобретенный александрийскими учеными Клеоксеном и Демоклитом.

В 1800 г. итальянский ученый А. Вольта создал первый химический источник тока. Это изобретение дало возможность немецкому ученому С. Земмерингу построить и представить в 1809 г. Мюнхенской академии наук проект электрохимического телеграфа. В октябре 1832 г. состоялась первая публичная демонстрация электромагнитного телеграфа русского ученого П.Л. Шиллинга. В том же году с помощью телеграфа Шиллинга была налажена связь между Зимним дворцом и Министерством путей сообщения.

Подлинную революцию в деле электросвязи по проводам произвели русский академик Б.С. Якоби и американский ученый С. Морзе, предложившие независимо друг от друга пишущий телеграф.

В 1841 г. Б.С. Якоби ввел в эксплуатацию линию, оборудованную пишущим телеграфом и соединявшую Зимний дворец с Главным штабом. Через два года аналогичная линия протяженностью 25 км была построена между Петербургом и Царским Селом. В 1850 г. Б.С. Якоби сконструировал первый буквопечатающий аппарат. В июне 1866 г. была осуществлена прокладка кабеля через Атлантический океан. Европа и Америка оказались связанными телеграфом.

Рождение телеграфа дало толчок к появлению телефона. Начиная уже с 1837 г. многие изобретатели пытались передать на расстояние человеческую речь с помощью электричества. В 1876 г. американский изобретатель А.Г. Белл запатентовал устройство для передачи речи по проводам – телефон. В 1878 г. русский ученый М. Махальский сконструировал первый чувствительный микрофон с угольным порошком.

На первых порах для телефонной связи использовались телеграфные линии. Специальная двухпроводная телефонная линия была спроектирована в 1895 г. профессором П.Д. Войнаровским и построена в 1898 г. между Петербургом и Москвой.

В 1886 г. русский физик П.М. Голубицкий разработал новую схему телефонной связи. Согласно этой схеме микрофоны абонентских телефонных аппаратов получали питание от одной (центральной) батареи, расположенной на телефонной станции. Первые телефонные станции в России были построены в 1882–1883 гг. в Москве, Петербурге, Одессе.

Первая публичная демонстрация устройства А.С. Попова для приема электромагнитных волн состоялась 7 мая 1895 г. Этот день вошел в историю как день изобретения радио.

Сотрудники созданной в 1918 г. Нижнегородской лаборатории (ее возглавил М.А. Бонч-Бруевич) уже в 1922 г. построили в Москве первую в мире радиовещательную станцию мощностью 12 кВт.

В 1935 г. между Нью-Йорком и Филадельфией вступила в строй радиолиния на ультракоротких волнах, которая впоследствии была названа “радиорелейной линией”.

Отныне во все концы земного шара протянулись цепочки радиорелейных линий. Строительство первой радиорелейной линии в нашей стране было осуществлено в 1953 г. между Москвой и Рязанью.

“Бип...бип... бип”. Эти сигналы услышал 4 октября 1957 г. весь мир. Наступила эра освоения космоса. Совсем небольшой срок отделяет нас от этой даты, а на космические орбиты уже запущены тысячи искусственных спутников, исправно служащих человеку.

23 апреля 1965 г. в СССР был запущен искусственный спутник Земли “Молния-1”, на борту которого находилась приемопередающая ретрансляционная станция.

В 1960 г. в Америке был создан первый в мире лазер. Это стало возможным после появления работ советских ученых В.А. Фабриканта, Н.Г. Басова и A.M. Прохорова и американского ученого Ч. Таунса, получивших Нобелевскую премию.

“Обучать” лазеры передаче на расстояние информации стали вскоре после их изобретения. Первые лазерные линии связи появились в начале 60-х годов этого столетия. В нашей стране первая такая линия была построена в 1964 г. в Ленинграде.

Москвичам хорошо знакомы такие уголки столицы, как Ленинские горы и Зубовская площадь. В 1966 г. между ними засветилась красная нить лазерного света. Связывала она две городские АТС, находящиеся на расстоянии 5 км друг от друга.

В 1970 г. в американской фирме “Corning Glass Company” было получено сверхчистое стекло. Это дало возможность создать и внедрить повсеместно оптические кабели связи.

В 1947 г. появилось первое упоминание о разработанной фирмой “Белл” системе с импульсно-кодовой модуляцией (ИКМ). Система оказалась громоздкой и неработоспособной. И только в 1962 г. была внедрена в эксплуатацию первая коммерческая система передачи ИКМ-24.

Современные тенденции развития электросвязи

В последующие годы связь развивалась по пути цифровизации всех видов информации. Это стало генеральным направлением, обеспечивающим экономичные методы не только ее передачи, но и распределения, хранения и обработки.

Интенсивное развитие цифровых систем передачи объясняется существенными достоинствами этих систем по сравнению с аналоговыми системами передачи: высокой помехоустойчивостью; слабой зависимостью качества передачи от длины линии связи; стабильностью электрических параметров каналов связи; эффективностью использования пропускной способности при передаче дискретных сообщений и др.

В 2002 году развитие местной телефонной связи осуществлялось в основном на базе современных цифровых АТС, что позволило повысить качество и расширить спектр предоставляемых услуг. Коэффициент емкости цифровых станций от общей монтированной емкости местной телефонной сети в 2002г. составил порядка 40% против 36,2% в 2001 году. На 1.01.2003 г. на сетях России действовало порядка 195 тыс. единиц междугородних и местных таксофонов, в том числе 63 тыс. универсальных. Количество таксофонов увеличилось на 13% и составило 127,5 тыс. штук. Прирост числа основных телефонных аппаратов местной телефонной сети составил 1.8 млн. единиц, в основном за счет телефонных аппаратов, установленных у населения. Общее количество абоненнтов сотовой подвижной связи России на конец 2002 года составило 17,7 млн., прирост абонентской базы по отношению к 2001 году – 2,3 раза. В 2002 году за год компьютерный парк России увеличился по сравнению с 2001-м на 20%. Количество постоянных интернет-пользователей увеличилось на 39% и достигло 6 млн. человек. Объём отечественного ИТ-рынка вырос на 9% и составил более 4 млд. долларов. В 2002 году введено в эксплуатацию более 50 тыс. км какбельных и радиорелейных линий связи, 3 млн. номеров автоматических телефонных станций, более 13 млн. номеров подвижной телефонной связи, а также свыше 70 тыс. междугородних и международних каналов.

Особенно быстрыми темпами в мире и у нас в стране идет развитие сети мобильной радиосвязи. По числу абонентов системы мобильной связи уже можно судить об уровне и качестве жизни в данной стране. В этом смысле темпы роста абонентов мобильной связи в России (почти 200 % в год) являются показателем роста благосостояния общества.

Исходя из макроэкономических показателей развития Российской Федерации, определенных в Основных направлениях социально-экономической политики Правительства Российской Федерации на долгосрочную перспективу, рынок телекоммуникационных услуг к 2010 году будет характеризоваться следующим образом (табл. 1).

Таблица 1. Показатели развития телекоммуникаций России на период до 2010 года

Показатели

Количество телефонов, млн.

Телефонная плотность на 100 жителей, %

Количество мобильных телефонов, млн.

Плотность сотовых телефонов на 100 жителей, %

Количество пользователей Интернет, млн.

Плотность пользователей Интернет на 100 жителей, %

Человечество движется по пути создания Глобального информационного общества. Его основой станет Глобальная информационная инфраструктура, составляющей которой будут мощные транспортные сети связи и распределенные сети доступа, предоставляющие информацию пользователям. Глобализация связи и ее персонализация (доведение услуг связи до каждого пользователя) – вот две взаимосвязанные проблемы, успешно решаемые на данном этапе развития человечества специалистами электросвязи.

Дальнейшая эволюция телекоммуникационных технологий будет идти в направлениях увеличения скорости передачи информации, интеллектуализации сетей и обеспечения мобильности пользователей.

Высокие скорости . Необходимы для передачи изображений, в том числе телевизионных, интеграции различных видов информации в мультимедийных приложениях, организации связи локальных, городских и территориальных сетей.

Интеллектуальность . Позволит увеличить гибкость и надежность сети, сделает более легким управление глобальными сетями. Благодаря интеллектуализации сетей пользователь перестает быть пассивным потребителем услуг, превращаясь в активного клиента – клиента, который сможет сам активно управлять сетью, заказывая необходимые ему услуги.

Мобильность . Успехи в области миниатюризации электронных устройств, снижение их стоимости создают предпосылки к глобальному распространению мобильных оконечных устройств. Это делает реальной задачу предоставления услуг связи каждому в любое время и в любом месте.

В заключение отметим, что объем информации, передаваемой через информационно-телекоммуникационную инфраструктуру мира, удваивается каждые 2-3 года. Появляются и успешно развиваются новые отрасли информационной индустрии, существенно возрастает информационная составляющая экономической активности субъектов рынка и влияние информационных технологий на научно-технический, интеллектуальный потенциал и здоровье наций. Начало XXI века рассматривается как эра информационного общества, требующего для своего эффективного развития создания глобальной информационно-телекоммуникационной инфраструктуры, темпы развития которой должны быть опережающими по отношению к темпам развития экономики в целом. При этом создание российской информационно-телекоммуникационной инфраструктуры следует рассматривать как важнейший фактор подъема национальной экономики, роста деловой и интеллектуальной активности общества, укрепления авторитета страны в международном сообществе.

Страница 32 из 32 История развития телекоммуникационных систем и компьютерных сетей

История развития телекоммуникационных систем и компьютерных сетей

Вычислительная и телекоммуникационная технологии

Компьютерная сеть (Вычислительная сеть) - это совокупность компьютеров, соединенных линиями связи. Линии связи образованы кабелями или проводами, p-каналами и оптическими коммуникационными устройствами. Все сетевое оборудование работает под управлением системного и прикладного программного обеспечения.

Сеть - network - взаимодействующая совокупность объектов, образуемых устройствами передачи и обработки данных.

Компьютерные сети, отнюдь не являются единственным видом сетей, созданным человеческой цивилизацией. Даже водопроводы Древнего Рима можно рассматривать как один из наиболее древних примеров сетей, покрывающих большие территории и обслуживающих многочисленных клиентов. Другой, менее экзотический пример - электрические сети. В них легко можно найти аналоги компонентов любой территориальной компьютерной сети: источникам информационных ресурсов соответствуют электростанции, магистралям - высоковольтные линии электропередач, сетям доступа - трансформаторные подстанции, клиентским терминалам - осветительные и бытовые электроприборы.

С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах

Рассмотрим основные этапы развития телекоммуникационных сетей.

В середине XX в. основными системами коммуникации (лат. communico - делаю общим) между людьми, занятыми в экономике, не считая привычные почтовые письма, были телеграф, телефон и радиосвязь . Телевидение находилось на этапе своего становления. Посредством телеграфных, телефонных сетей и радиосетей осуществлялась передача информационных потоков, но обработка переданной информации целиком возлагалась на человека.

Настоящим прорывом в науке, технике, экономике и социальной жизни стало изобретение компьютера. На первых этапах своего развития (до 70-х гг. XX в.) компьютерная техника использовалась исключительно для обработки информации, а сбор и передача информации осуществлялись с помощью телекоммуникационных систем и сетей, основой которых являлись вышеупомянутые телеграфные, телефонные сети и радиосети.

После создания компьютерных сетей, представляющих собой совокупность компьютеров и объединяющих их каналов связи, сбор, передача и обработка информации стали осуществляться с помощью компьютерной техники. Два эволюционных пути - развитие телекоммуникаций и вычислительной техники - привели их к закономерному соединению .

Телекоммуникационные системы и сети являются по сравнению с компьютерными сетями «старожилами», и первыми из них были телеграфные и телефонные сети.

Телеграф (греч. tele - далеко и grapho - пишу) был изобретен в середине XIX в. и предназначался для передачи сообщений на расстояние при помощи электрических сигналов, символов и букв. Самый заметный вклад в развитие телеграфа внесли такие ученые, как К. Штейнгейль, В. Сименс, С. Морзе, Ж. Бодо и др.

В 1838 г. в Мюнхене немецкий ученый К. Штейнгейль построил первую телеграфную линию длиною в 5000 м.

В 1843 г. шотландский физик А. Бэйн продемонстрировал и запатентовал собственную конструкцию электрического телеграфа, которая позволяла передавать изображения по проводам. Аппарат А. Бэйна считается первой примитивной факс-машиной.

В 1866 г. был проложен трансатлантический телеграфный кабель по дну океана между Америкой и Европой, а в 1870 г. фирма «Сименс» протянула индоевропейскую телеграфную линию длиною в 11 тыс. км.

В конце XIX в. в Европе было протянуто 2840 тыс. км подземного кабеля телеграфных линий, в США - свыше 4 млн км, в России протяженность телеграфных линий составляла 300 тыс. км. Общая протяженность телеграфных линий в мире в начале XX в. составила около 8 млн км.

К середине XX в. в Европе были созданы телеграфные сети, получившие название Telex (TELEgraph + EXchange). Несколько позже в США также была создана национальная сеть абонентского телеграфа, подобная Telex и получившая наименование TWX (Telegraph Wide area eXchapge).

Сети международного абонентского телеграфа* постоянно расширялись, и к 1970 г. сеть Telex объединяла абонентов более чем из 100 стран мира.

В наши дни возможность обмена сообщениями по сети Telex сохранена во многом благодаря электронной почте сети Интернет. На территории бывшего СССР телеграфная связь существует и поныне. Телеграфные сообщения передаются и принимаются при помощи специальных устройств - телеграфных модемов, сопряженных в узлах связи с персональными компьютерами операторов. Телеграфная связь используется в основном для передачи телеграфной корреспонденции, поступающей от государственных предприятий, учреждений и частных лиц, ведения документальных переговоров, передачи статистических данных и различной цифровой информации между предприятиями.

Тем не менее в некоторых странах национальные операторы сочли телеграф устаревшим видом связи и свернули все операции по отправке и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 г. В январе 2006 г. старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставке телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все еще поддерживают сервис по отправке и доставке традиционных телеграфных сообщений.

Исторически телефонные сети появились несколько позже телеграфных.

Первые слова были сказаны по телефону (греч. tele - далеко и phone - голос) 10 марта 1876 г. и принадлежали они шотландскому изобретателю, преподавателю школы глухонемых Александру Грэму Беллу: «Мистер Ватсон, зайдите, я хочу Вас видеть». Дальность действия этой телефонной линии внутри здания составляла 12 м. Следует отметить, что вначале телефон был недооценен специалистами телеграфной связи, воспринявшими телефон за «никому ненужную лабораторную игрушку*. Данная экспертная оценка являлась примером крупнейшей и грубейшей ошибки за всю историю телекоммуникационного бизнеса. Через несколько лет телефон и телефонные сети стали развиваться стремительными темпами.

В 1878 г. компанией Bell Telephone, организованной А.Г. Беллом в Нью-Хевене (штат Коннектикут, США), была построена первая в мире телефонная станция и выпущен первый телефонный справочник объемом в 21 страницу, а уже в следующем году эта же компания начала строительство телефонной сети объемом на 56 тыс. абонентов.

Первая в России междугородная телефонная сеть заработала в 1880 г. на Царскосельской железной дороге. Оценив преимущества нового вида связи, российские предприниматели стали обращаться с ходатайствами к правительству о выдаче разрешения на строительство телефонных линий.

Первые абоненты телефонных станций соединялись вручную и вызвать абонента можно было, назвав требуемый номер телефонистке. В 10-х гг. XX в. автоматические телефонные станции (АТС) постепенно стали вытеснять телефонисток, соединявших абонентов вручную. Появились телефопные аппараты с дисковым набором номеров. Первая АТС в СССР появилась только в 1924 г. в Кремле и обслуживала 200 абонентов. Городская московская АТС на 15 тыс. абонентов начала работать в 1930 г. К началу Второй мировой войны в СССР насчитывалось более 1 млн абонентов.

После Второй мировой войны развитие телефонных сетей получило новый импульс. В 1951 г. в США впервые АТС стали использоваться не только для соединения в пределах одного города, но на междугородних линиях. В СССР такая АТС впервые была введена в эксплуатацию в 1958 г. между Москвой и Ленинградом.

В 1956 г., спустя 90 лет после прокладки первой телеграфной кабельной линии через Атлантику, закончилась прокладка первой трансатлантической телефонной линии связи, соединившей Великобританию и США (через Канаду).

В 50-60-е гг. XX в. разрабатывались основные методы цифровой передачи сигнала, в том числе голоса, велись работы по созданию радио- и видеотелефонии, мобильной телефонной связи.

В 1978 г. в Бахрейне начала эксплуатацию коммерческая система сотовой телефонной связи, которая считается первой реальной системой сотовой связи в мире.

80-90-е гг. XX в. характеризовались интенсивным внедрением цифровых методов передачи голоса и соответствующих телефонных сетей, использованием спутниковой связи, мобильной сотовой связи, а также широчайшим использованием компьютеров для обеспечения функционирования телефонных сетей.

Работы в области радиосвязи начались с тех пор, когда немецкий ученый Г. Герц в 1888 г. открыл способ создания и обнаружения электромагнитных радиоволн. 25 апреля 1895 г.

русский ученый А.С. Попов сделал доклад, посвященный методу использования излученных электромагнитных волн для беспроводной передачи электрических сигналов, содержащих информацию. В марте 1896 г. ученый провел эксперимент, он передал радиограмму с двумя словами «Генрих Герц» на 250 м. Через несколько лет в Кронштадте, не подавая заявку на патент, он наладил выпуск принимающей и передающей аппаратуры. Предприимчивый итальянец Г. Маркони заинтересовался новым изобретением. В июле 1898 г. он подал патент в Англии, предъявив подобное устройство, чуть усложнив схемы А.С. Попова. Приоритет открытия радио остался в истории человечества за Г. Маркони.

В 1898 г. Г. Маркони организовал радиосвязь между Францией и Англией, а в 1901 г. ему удалось передать сигналы со станции в Англии на станцию в Ньюфаунленде, США. В начале своего становления радиосвязь использовалась для передачи телеграфных сообщений, не учитывая возможностей радио по передаче звука.

В 1915 г. был осуществлен исторический эксперимент, когда по радио успешно были переданы речевые сигналы из Арлингтона (штат Вирджиния) в Париж. Следует отметить, что Г. Маркони предпочел, чтобы краеугольным камнем его беспроволочного телеграфа оставалась азбука Морзе, так как для беспроволочной передачи речи он не видел никакого полезного применения.

В 1920 г. американский радиолюбитель Конрад сконструировал радиостанцию для работы в режиме «телефон» и впервые в мире начал вести вещательные передачи.

В первой половине XX в, после разработки учеными и инженерами более совершенной усилительной аппаратуры, антенных устройств, а также методов передачи и приема радиосигналов радиосвязь стала стремительно развиваться.

Вторая половина XX в. характеризовалась совершенствованием радиоаппаратуры, разработкой цифровых методов радиосвязи, а также использованием спутниковых систем радиосвязи.

Что касается телевидения («радио с изображением»), то идеи создания электрической системы для передачи подвижного изображения на расстояние высказывались еще в 70-е гг.

XIX в. Основывались эти идеи на чисто теоретических выводах, так как возможности физических экспериментов в ту пору были ничтожны. Однако в середине 20-х гг. XX в. промышленно-техническая база развилась настолько, что впервые появилась возможность практической реализации теоретических принципов телевидения.

Идеям и экспериментам по передаче на расстояние подвижного изображения предшествовали идеи и эксперименты по передаче изображения неподвижного.

В 20-е гг. XX в. развитие электронного телевидения проходило в борьбе с противодействием сторонников механического телевидения (с использованием вращающихся механизмов для получения развертки на экране), пессимистически оценивавших перспективы электронных систем из-за больших технических трудностей, связанных с их созданием. Но идея электронного телевидения как самая прогрессивная оказалась наиболее жизненной.

Отцом современного электронного телевидения стал В.К. Зворыкин, эмигрировавший после гражданской войны в США. В 1931 г. он изобрел электронно-лучевую трубку, которую назвал иконоскопом. Изобретение иконоскопа явилось поворотным пунктом в истории телевидения, определившим направление его дальнейшего развития; он обеспечивал телевизионные передачи с большим числом строк.

Первые передачи телевизионных изображений по радиоканалу в СССР были произведены в апреле-мае 1931 г. Они были осуществлены, однако, с разложением изображения на строки по механической системе, т.е. развертка изображения на элементы проводилась с помощью вращающегося диска.

Исследования в области передающих и приемных электронно-лучевых трубок, схем развертывающих устройств, усилителей, телевизионных передатчиков и приемников, достижения в области радиоэлектроники подготовили переход к электронным системам телевидения.

В СССР летом 1938 г. первым заработал опытный Ленинградский телецентр, а в Москве, на Шаболовке, было построено специальное здание; телевизионное оборудование и передатчик заказаны в США, там же прошли стажировку ведущие специалисты. В итоге в стране появился первый Московский телецентр, принятый в постоянную эксплуатацию в декабре 1938 г.

В 1953 г. в США началось регулярное цветное телевизионное вещание, но из-за большой стоимости цветных телевизоров оно стало массовым только через 12-15 лет (первые.10 млн телевизоров были проданы к 1966 г.). В СССР регулярное вещание в цвете началось только в 1967 г., передачи Центрального телевидения стали цветными в 1977 г., а цветное оборудование получило периферийные телецентры в 1987 г.

В начале 90-х гг. XX в. были начаты исследования по передаче цифрового сигнала по эфирным каналам связи. Эта технология за короткий срок получила признание. В настоящее время ее используют более 300 компаний - производителей телевизионной электроники.

Наряду с эфирным телевидением в мире велись работы по созданию систем кабельного телевидения . Первая система кабельного телевидения в США была построена в 1952 г. в г. Лансфорде для приема передач от ближайшего телецентра в г. Филадельфии. Причиной возникновения кабельного телевидения в США в 1948 г. стала приостановка выдачи лицензий на новые телевизионные передающие станции почти на четыре года. Однако благодаря высокому качеству и помехозащищенности кабельное телевидение стало основным видом телевидения в крупных городах.

В 1960 - 1970-е гг. в СССР в соответствии с концепциями развития телевизионного вещания была создана огромная, практически тотальная система коллективного приема телевидения - почти 80 % телезрителей в городах получали телевидение по коаксиальному кабелю.

В последние годы кабельное телевидение стало одним из наиболее динамично развивающихся направлений телекоммуникационных сетей. Преимуществом телевизионных кабельных сетей является, что что они могут использоваться также для доступа к глобальной сети Интернет или передачи информации с приборов учета энергии и воды.

Рассмотренные выше радио- и телевизионные системы с использованием радиоканалов для передачи данных являются основными элементами беспроводных телекоммуникационных систем, включающих спутниковые системы и системы мобильной сотовой связи.

История развития компьютерных сетей

Компьютерные сети являются логическим результатом эволюции развития компьютерных технологий. Постоянно возрастающие потребности пользователей в вычислительных ресурсах обусловили попытки специалистов компьютерных технологий объединить в единую систему отдельные компьютеры.

Обратимся сначала к компьютерному корню вычислительных сетей. Первые компьютеры 50-х годов - большие, громоздкие и дорогие - предназначались для очень небольшого числа избранных пользователей. Часто эти монстры занимали целые здания. Такие компьютеры не были предназначены для интерактивной работы пользователя, а использовались в режиме пакетной обработки.

Системы пакетной обработки, как правило, строились на базе мэйнфрейма - мощного и надежного компьютера универсального назначения. Пользователи подготавливали перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр (рис.).

Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день. Таким образом, одна неверно набитая карта означала как минимум суточную задержку. Конечно, для пользователей интерактивный режим работы, при котором можно с терминала оперативно руководить процессом обработки своих данных, был бы удобней. Но интересами пользователей на первых этапах развития вычислительных систем в значительной степени пренебрегали. Во главу угла ставилась эффективность работы самого дорогого устройства вычислительной машины - процессора, даже в ущерб эффективности работы ис­пользующих его специалистов.

В начале 60-х гг. XX в. стали развиваться интерактивные (с вмешательством пользователя в вычислительный процесс) многотерминальные системы разделения времени. В таких системах мощный центральный компьютер (мэйнфрейм) отдавался в распоряжение нескольких пользователей. Каждый пользователь получал в свое распоряжение терминал (монитор с клавиатурой без системного блока), с помощью которого он мог вести диалог с компьютером. Компьютер по очереди обрабатывал программы и данные, поступающие с каждого терминала. Поскольку время реакции компьютера на запрос каждого терминала было достаточно мало, то пользователи практически не замечали параллельную работу нескольких терминалов и у них создавалась иллюзия монопольного пользования компьютером. Терминалы, как правило, рассредоточивались по всему предприятию, и функции ввода-вывода информации были распределенными, но обработка информации проводилась только центральным компьютером.

Такие многотерминальные централизованные системы внешне напоминали локальные вычислительные сети, до создания которых в действительности нужно было пройти еще большой путь. Сдерживающим фактором для развития компьютерных сетей был прежде всего экономический фактор. Из-за высокой в то время стоимости предприятия не могли приобрести сразу несколько компьютеров, а значит и объединить в вычислительную сеть было нечего.

Первые сети - глобальные

Развитие компьютерных сетей началось с решения более простой задачи - доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы в этом случае соединялись с компьютером через телефонные сети с помощью специальных устройств - модемов. Следующим этапом в развитии компьютерных сетей стали соединения через модем не только «терминал-компьютер», но и «компьютер-компьютер». Компьютеры получили возможность обмениваться данными в автоматическом режиме, что является базовым механизмом любой компьютерной сети. Тогда впервые появились в сети возможности обмена файлами, синхронизации баз данных, использования электронной почты, т.е. службы, являющиеся в настоящее время традиционными сетевыми сервисами. Такие компьютерные сети получили название глобальных компьютерных сетей.

Глобальные сети ( Wide Area Networks , WAN ) – сети объединяющие территориально рассредоточенные компьютеры, возможно находящиеся в различных городах и странах.

Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи, лежащие в основе современных вычислительных сетей. Такие, например, как многоуровневое построение коммуникационных протоколов, концепции коммутации и маршрутизации пакетов.

Глобальные компьютерные сети очень многое унаследовали от других, гораздо более старых и распространенных глобальных сетей - телефонных. Главное технологическое новшество, которое привнесли с собой первые глобальные компьютерные сети, состояло в отказе от принципа коммутации каналов, на протяжении многих десятков лет успешно использовавшегося в телефонных сетях.

Выделяемый на все время сеанса связи составной телефонный канал, передающий информацию с постоянной скоростью, не мог эффективно использоваться пульсирующим трафиком компьютерных данных, у которого периоды интенсивного обмена чередуются с продолжительными паузами. Натурные эксперименты и математическое моделирование показали, что пульсирующий и в значительной степени не чувствительный к задержкам компьютерный трафик гораздо эффективней передается сетями, работающими по принципу коммутации пакетов, когда данные разделяются на небольшие порции - пакеты, - которые самостоятельно перемещаются по сети благодаря наличию адреса конечного узла в заголовке пакета.

Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого, то в первых глобальных сетях часто использовались уже существующие каналы связи, изначально предназначенные совсем для других целей. Например, в течение многих лет глобальные сети строились на основе телефонных каналов тональной частоты, способных в каждый момент времени вести передачу только одного разговора в аналоговой форме. Поскольку скорость передачи дискретных компьютерных данных по таким каналам была очень низкой (десятки килобит в секунду), набор предоставляемых услуг в глобальных сетях такого типа обычно ограничивался передачей файлов, преимущественно в фоновом режиме, и электронной почтой. Помимо низкой скорости такие каналы имеют и другой недостаток - они вносят значительные искажения в передаваемые сигналы. Поэтому протоколы глобальных сетей, построенных с использованием каналов связи низкого качества, отличаются сложными процедурами контроля и восстановления данных.

Исторически первые компьютерные сети были созданы агентством по защите прогрессивных исследовательских проектов DARPA по заданию военного ведомства США. В 1964 г. были разработаны концепция и архитектура первой в мире компьютерной сети ARPAnet(от англ. Advanced Research Projects Agency Network), в 1967 г. впервые было введено понятие «протокол компьютерной сети». В сентябре 1969 г. произошла передача первого компьютерного сообщения между компьютерными узлами Калифорнийского и Стенфордского университетов. В 1977 г. сеть ARPANET насчитывала 111 узлов, в 1983 - 4 тыс. Сеть объединяла компьютеры разных типов, работавших под управлением различных операционных систем с дополнительными модулями, реализовавшими коммуникационные протоколы, общие для всех компьютеров сети. Такие операционные системы считаются первыми сетевыми операционными системами. Сеть ARPANET прекратила свое существование в 1989 г.

Прогресс глобальных компьютерных сетей во многом определялся прогрессом телефонных сетей.

С конца 60-х годов в телефонных сетях все чаще стала применяться передача голоса в цифровой форме.

Это привело к появлению высокоскоростных цифровых каналов, соединяющих автоматические телефонные станции (АТС) и позволяющих одновременно пере­давать десятки и сотни разговоров. Была разработана специальная технология для создания так называемых первичных, или опорных, сетей. Такие сети не предоставляют услуг конечным пользователям, они являются фундаментом, на котором строятся скоростные цифровые каналы «точка-точка», соединяющие оборудование других, так называемых наложенных сетей, которые уже работа­ют на конечного пользователя.

Сначала технология первичных сетей была исключительно внутренней технологией телефонных компаний. Однако со временем эти компании стали сдавать часть своих цифровых каналов, образованных в первичных сетях, в аренду пред­приятиям, которые использовали их для создания собственных телефонных и глобальных компьютерных сетей. Сегодня первичные сети обеспечивают скоро­сти передачи данных до сотен гигабит (а в некоторых случаях до нескольких терабит) в секунду и густо покрывают территории всех развитых стран.

К концу 1970-х годов сеть APRAnet насчитывала уже около 200 оконечных сис­тем. Через 10 лет число хостов в Интернете, уже объединявшем множество других компьютерных сетей, достигло 100 тысяч. Таким образом, 1980-е годы характери­зуются стремительным распространением созданных ранее сетевых технологий.

В начале 80-х происходило активное объединение локальных сетей университе­тов в крупные региональные сети. Примерами могут служить сеть B1TNET, обес­печивавшая обмен файлами и электронной почтой между университетами на се­веро-западе США, CSNET, объединившая исследователей в области сетевых технологий независимо от APRAnet, и др. В 1986 году была разработана сеть NSFNET, позволившая получить доступ к вычислительным ресурсам суперком­пьютеров. Начальная скорость магистрали, составившая 56 Кбит/с, к концу деся­тилетия выросла до 1,5 Мбит/с. Магистраль NSFNET позволила объединить меж­ду собой региональные компьютерные сети США.

В 1980-е годы APRAnet уже содержала многие из компонентов, которые составля­ют основу современного Интернета. 1 января 1983 года стандартный протокол NCP, предназначенный для обмена данными между хостами, был заменен стеком про­токолов TCP/IP (RFC 801). С этого времени стек TCP/IP используется всеми хостами Интернета. В конце 80-х в протокол TCP были внесены значительные усовершенствования, направленные на обеспечение оконечными системами конт­роля переполнения. Кроме того, была разработана система доменных имен (Domain Name System, DNS), связавшая мнемонические имена Интернет-ресурсов с их 32-разрядными адресами (RFC 1034).

Параллельно с развитием APRAnet в США во Франции в начале 1980-х годов воз­ник проект Minitel, имевший поддержку со стороны правительства Франции и поставивший перед собой амбициозную цель - связать все сети в единую компь­ютерную сеть. Система, разработанная Minitel, представляла собой открытую ком­пьютерную сеть с коммутацией пакетов (протокол Х.25 с поддержкой виртуаль­ного канала), состоявшую из Minitel-серверов и недорогих пользовательских терминалов со встроенными низкоскоростными модемами. Большой успех при­шел к проекту Minitel после того, как французское правительство объявило о раз­даче бесплатных терминалов всем желающим для домашнего пользования. Сеть Minitel содержала как бесплатные, так и платные информационные ресурсы. В зените своей популярности в середине прошлого десятилетия Minitel поддерживала более чем 20 000 видов обслуживания - от удаленных банковских операций до организации доступа к специализированным исследовательским базам данных.