Аспекты внедрения автоматизированных систем учета энергоресурсов в жкх. Технический учёт энергоресурсов предприятия

Система учета энергоресурсов

Одна из главных причин тревог, касающихся сферы ЖКХ – неконтролируемый рост тарифов. Система учета энергоресурсов АИСТ предназначена для автоматического сбора данных о потреблении воды, газа, тепла, электроэнергии на объектах ЖКХ и просмотра данных через WEB-интерфейс посредством стандартного WEB-браузера или мобильных приложений. Все показания в системе собираются и обрабатываются в автоматическом режиме, за счет чего исключается возможность воздействия человеческого фактора и сопряженных с ним ошибок.
Данные собираются счетчиками учета энергоресурсов и отправляются к единому концентратору КД-1000, где реализуется их централизованная обработка и хранение. Процесс передачи реализуется при помощи сетей PLC-mesh и RF-mesh. Выгрузка данных предоставляется в виде отчетов различной формы.

Автоматизированная система учета энергоресурсов представляет собой открытую систему, в рамках которой осуществляется сбор и обработка информации об энергопотреблении учреждения или предприятия. Ее внедрение дает несколько преимуществ:

  • быстрая окупаемость, даже при задействовании самой дорогой системы;
  • экономия энергетических ресурсов;
  • создание отчетов о потребление энергии в доступной форме;
  • выявление главных источников потерь и их устранение;
  • повышение точности планирования энергозатрат на будущие периоды с учетом того, сколько ресурсов затрачивается на данный момент;
  • создание “прозрачной” системы, на базе которой будет происходить управление энергоресурсами.

Процесс внедрения данной системы происходит довольно просто и не требует задействования большого числа специалистов. Дополнительно учитываются пожелания заказчика насчет точности получаемой информации, которая позже заменяется в доступный для понимания отчет. Все эти нюансы подстраиваются под каждое предприятие отдельно.

Экономия

СИСТЕМА «АИСТ» РЕШАЕТ
СЛЕДУЮЩИЕ ПРОБЛЕМЫ
УПРАВЛЯЮЩИХ КОМПАНИЙ:

ЭКОНОМИЧЕСКИЕ ВЫГОДЫ
СИСТЕМЫ «АИСТ»:

  • Слабый контроль за расходом ресурсов
  • Списывания всех потерь на ОДН
  • Частые аварии
  • Невозможность снять показания со счетчиков,
    если в квартире никого нет
  • Мошенничество со стороны жильцов

  • Снижаются затраты на персонал
  • Исключается возможность хищения энергоресурсов
    за счет межмашинного обмена данными
  • Планируются точные объемы энергопотребления
  • Становится возможной разработка более гибких
    тарифных планов

Создание отчетов о потребление энергии

Автоматизированная система учета энергоресурсов «АИСТ»

Нижний уровень Системы учета энергоресурсов АИСТ составляют счетчики энергоресурсов. Сбор данных ведется со всех типов счетчиков: электричества, воды, газа и тепла и осуществляется в автоматическом режиме.

Основным преимуществом счетчиков электроэнергии АИСТ является то, что в счетчик может быть дополнительно установлен блок ввода-передачи данных. При этом компания ООО АйСиБиКом разработала большую линейку коммуникационных модулей, которые позволяют передавать данные со счетчиков по различным каналам связи.

Программный комплекс Система учета энергоресурсов АИСТ представляет собой Web-сервис конечного пользователя, доступный через стандартный Web -браузер.

Для входа в Веб-сервис необходимо пройти процедуру регистрации и ввести логин и пароль. Веб-сервис отображает список объектов с параметрами.

Веб-сервис позволяет осуществлять различные действия с объектами (создание, редактирование, удаление). Древовидный просмотр иерархии объектов (два уровня) + одновременное отображение на карте.

Веб-сервис позволяет работать с Точками учета. Базовым примером точки учета является квартира абонента.

Программный комплекс позволяет стоить отчеты и графики по точкам учета, объектам, жилищным комплексам/микрорайонам, ресурсам за заданный интервал времени с возможностью выгрузки результатов в CSV, XLS или XLSX, PDF или в виде изображения с возможностью задания шага измерения (час или день).

Информация обо всех видах энергии, мощностях, напряжениях и токах в современном многоквартирном доме, полном лазерных панелей и включенных приборов, - возможно ли получать ее оперативно и не беспокоиться о достоверности данных? Система АСКУЭР разработки «Связь инжиниринг М» поможет вам отбросить все сомнения на этот счет.

ЗАО «Связь инжиниринг М», г. Москва

В последнее время в связи с принятием Федерального закона 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» стал актуальным вопрос об организации достоверного и современного учета потребления энергоресурсов в сфере жилищно-коммунального хозяйства. Автоматизированная система учета электроэнергии необходима для обеспечения взаимодействия системы коммунальных платежей и постоянного контроля приборов учета. Нам известно, что в концепцию создания большинства систем АСКУЭ заложены два основных принципа – общепризнанная надежность технологии сбора и передачи данных и открытая архитектура системы, которая позволяет вести ее дальнейшее развитие. Важно, что при использовании АСКУЭ ЖКХ потребители своевременно получают информацию об объемах потребляемых и отпускаемых энергоресурсов. При этом необходимо обеспечить доступный и высоконадежный канал передачи информации, ведь не секрет, что если с домовых счетчиков контроллеры энергосбыта могут легко снять показания, то поквартирный учет – задача непростая.

ЗАО «Связь инжиниринг М» предлагает множество продуктов и решений, которые значительно облегчат учет потребления энергоресурсов и сделают комфортной жизнь каждого потребителя в отдельности. Компания была создана в 1997 г. на базе отделов РТИ им. академика Минца, ведущего разработчика наземных радиолокационных комплексов ПРО, имеет собственное КБ и испытательную базу.

ЗАО «Связь инжиниринг М» с 2005 года занимается разработкой и производством АСКУЭ для базовых станций сотовых операторов, объектов коммунального и муниципального хозяйства, а также промышленных объектов. Разработанные компанией устройства позволяют осуществлять сбор и передачу данных с приборов учета, а с помощью программного обеспечения можно формировать необходимые отчеты для сбытовых компаний. Сегодня ЗАО «Связь инжиниринг М» предлагает комплексные решения по учету энергоресурсов для объектов жилищно-коммунального и муниципального хозяйства на базе разработанных устройств. Это в том числе и решения АСКУЭ многоквартирных домов на базе каналов GSM и Ethernet.

Опыт показывает, что основной проблемой процесса учета энергоресурсов в ЖКХ является его низкая автоматизация. При организации поквартирного учета потребления электроэнергии, как правило, речь идет только об установке приборов учета. Но если в этой ситуации ответственность за достоверность показаний и оплату за потребление несет потребитель, то есть собственник или наниматель квартиры, то при учете потребления горячей и холодной воды и тепла от достоверности и своевременности передачи показаний зависит функционирование и финансовая устойчивость эксплуатирующей организации. На базе устройств сбора и передачи данных (УСПД) собственного производства ЗАО «Связь инжиниринг М» были разработаны и начали активно внедряться системы автоматизированного учета энергоресурсов в ЖКХ – АСКУЭР. АСКУЭР – это комплекс специализированных, метрологически аттестованных технических средств автоматизированного учета электрической энергии, тепловой энергии, расхода горячей и холодной воды на объектах ЖКХ с целью энергосбережения и ведения расчетов между поставщиками и потребителями энергоносителей.

АСКУЭР в первую очередь предназначена для:

Получения достоверной информации о количестве потребленной электрической энергии, тепловой энергии, расходе горячей и холодной воды;

Снижения трудоемкости и стоимости работ по сбору, обработке, передаче и документированию информации;

Обеспечения финансовых расчетов за электрическую энергию, тепловую энергию, расход горячей и холодной воды между поставщиками и потребителями.

Основными целями создания АСКУЭР являются:

Коммерческий учет потребленной электрической энергии, тепловой энергии, расхода горячей и холодной воды;

Автоматизированный сбор результатов измерений;

Хранение данных об измерениях в базе данных;

Передача данных об измерениях в единую базу данных.

Предлагаемая система строится из двух подуровней:

Информационно-измери­тель­ный комплекс (ИИК) состоит из счетчиков электрической энергии и счетчиков тепловой энергии, а также каналообразующей аппаратуры. ИИК предназначен для выполнения измерений электрической и тепловой энергии, расхода горячей и холодной воды с последующей их передачей на верхний уровень системы (ИВК);

Информационно-вычисли­тель­ный комплекс (ИВК) состоит из каналообразующей аппаратуры, сервера сбора и обработки данных и АРМ-ов (автоматизированных рабочих мест операторов). ИВК предназначен для выполнения регламентного опроса приборов учета уровня ИИК, контроля достоверности полученной информации, промежуточного хранения, обработки и просмотра данных. На данном уровне система обеспечивает функцию сопряжения с биллинговыми системами. Требования к сопряжению с биллинговыми системами сбытовых организаций определяются отдельным документом в соответствии с требованиями установленных систем.

Данная система обеспечивает:

Коммерческий учет потребляемой электрической энергии;

Учет потребляемой тепловой энергии;

Учет расхода горячей и холодной воды;

Формирование отчетных документов;

Хранение учетной информации на сервере АСКУЭР.

Система автоматически фиксирует значения показаний счетчиков электрической и тепловой энергии, водосчетчиков с возможностью реализации алгоритмов расчета объемов потребленной электрической энергии, тепловой энергии, расхода горячей и холодной воды с учетом тарифов, осуществляет накопление, хранение и передачу данных по регламенту или по запросу с уровня ИВК.

Это разработка, которая обладает надежной защитой информации от потерь и искажений при аппаратных отказах и попытках несанкционированного доступа на программном и аппаратном уровнях, а также возможностью дальнейшего наращивания и модернизации аппаратных и программных средств.

Система АСКУЭР разработки «Связь инжиниринг М» работает с большинством серийно выпускаемых счетчиков электроэнергии с цифровым выходом. Для организации учета расхода горячей и холодной воды и тепловой энергии могут применяться серийно выпускаемые теплосчетчики с цифровым выходом, датчики расхода, датчики давления и температуры.

В качестве каналов связи ИИК с ИВК используется пакетный режим передачи данных GSM/GPRS. Для получения результатов измерений с ИИК по запросу из ИВК – канал DATA (GSM/CSD).

Основной компонент системы – устройство мониторинга УМ‑31, разработано и производится ЗАО «Связь инжиниринг М». Прибор имеет сертификат Федерального агентства по техническому регулированию и метрологии об утверждении типа средств связи, обеспечивает сбор и передачу показаний на сервер сбора данных со счетчиков энергоресурсов с цифровым выходом по интерфейсам CAN, RS-232 или RS-485.

К устройству можно подключить до 300 точек учета различных типов, показания с которых будут распознаваться и формировать базу данных определенного формата на основе заданного алгоритма. Собственное программное обеспечение позволяет вести учет в автоматическом режиме по заданному протоколу периода опроса либо по запросу оператора. Формируются почасовой, суточный, месячный, годовой графики потребления энергоресурсов. Информация представлена в удобном интерфейсе в графическом или табличном виде.

Пилотный объект АСКУЭР был установлен в Москве, в районе Северное Бутово, успешно эксплуатируется и имеет положительные отзывы со стороны энергосбытовых организаций.

В статье рассматриваются аспекты внедрения автоматизированных сис­тем учета на основе построенной АСКУЭ на базе АСУ и диспетчеризации АСУД‑248 производства НПО «Текон-Автоматика».

Одно из основных направлений энергетической стратегии России - способность сферы экономики эффективно использовать энергоресурсы, предотвращать нерациональные затраты на внутреннее энергообеспечение и дефицитность топливно-энергетических балансов на федеральном, региональном и муниципальном уровнях .

Актуальность и особая значимость этих вопросов для обеспечения устойчивого развития общества в целом определяют необходимость их глубокой и детальной проработки на методологическом и практическом уровнях.

Доминирующим фактором нерациональных затрат являются потери, неизбежно возникающие на этапах транспортировки энергии от поставщика к потребителю.

Превращение энергии в дорогой товар выдвигает качественно новые требования к измерению и учету этого товара.

Установка приборов учета (ПУ), безусловно, является необходимым средством повышения достоверности процесса учета в целом. Однако приборы учета, рассредоточенные территориально, не позволяют вести мониторинг текущих показателей и в то же время контролировать работу, обеспечить одновременный съем показаний и производить обработку полученных данных. В лучшем случае возможен лишь ежемесячный обход объектов учета с выполнением полуавтоматического сбора накопленных за отчетный период данных, что требует неоправданных (а порой и непосильных) затрат со стороны эксплуатирующей организации.

В связи с этим актуальной является реализация системы, которая позволила бы объединить локальные узлы учета (ЛУУ) для создания единого измерительно-информационного пространства для единовременного, непрерывного, автоматического контроля над технологическими процессами генерации, транспортировки и потребления энергоресурсов, а также организации коммерческих расчетов между поставщиками и потребителями ресурсов .

Сама автоматизированная система коммерческого учета энергоресурсов (АСКУЭ) в широком смысле представляет собой не только систему учета электропотребления, но и учет теплоносителя в сетях горячего водоснабжения (ГВС), отопления, а также учет расхода холодной воды (ХВС). В статье рассматриваются аспекты внедрения автоматизированных систем учета на основе построенной АСКУЭ на базе автоматизированной системы управления и диспетчеризации АСУД-248 производства НПО «Текон-Автоматика» .

Модель АСКУЭ

Как уже было отмечено в предыдущей статье , архитектуру АСКУЭ удобно рассматривать с точки зрения трехуровневой модели:

1. Уровень датчиков.

2. Уровень среды передачи данных.

3. Уровень серверов (ПК).

С точки зрения передачи данных основной информационный поток идет с первого на третий уровень.

Первый уровень объединяет ЛУУ, выполняющие первичную обработку информации (параметров расхода тепла, воды, электричества, газа и т.п.). На данном уровне выделены ПУ с импульсным выходом и ПУ с возможностью взаимодействия через интерфейсы RS-232, RS-485. Это позволяет полностью охватить как общедомовой учет, так и задачи поквартирного учета. Как правило, все водосчетчики (а также другие типы ПУ) имеют импульсный выход, а подавляющее большинство общедомовых теплосчетчиков поддерживают хорошо известный интерфейс RS-232.

Второй - определяет канал, форматы информационных обменов, способ передачи данных ПУ.

На данном уровне располагается оборудование АСУД-248, выполняющее функции устройств согласования и передачи данных (УСПД) с ПУ - это концентратор цифровых сигналов (КЦС), обеспечивающий взаимодействие по интерфейсу RS-232/485; концентратор измерителей расхода (КИР), обеспечивающий работу с импульсными ПУ.

Третий уровень совмещает в себе средства хранения, обработки и анализа данных ПУ. В задачи этого уровня входит предоставление пользователям АСКУЭ максимально объективной информации о процессах потребления энергоресурсов как отдельным объектом, так и рассматриваемой инфраструктурой в целом.

На данном уровне располагаются программные модули АСУД-248, решающие указанные задачи.

Создание общей базы данных учета энергоресурсов района

В силу того что структура районных управляющих организаций (УО) состоит из нескольких ОДС, для удобства проведения анализа данных учета энергоресурсов целесообразна организация единого сервера сбора данных (ЕССД) в рамках района. Территориально ЕССД может располагаться на территории УО, а архивы ПУ из базы данных (БД) ОДС реплицировались бы по каналам передачи данных ОДС - УО.

Под репликацией БД (от англ. replication - копирование, дублирование) понимается процесс приведения неодинаковых состояний двух и более БД со схожей структурой в одинаковое состояние.

Реализация механизма репликации локальных БД ОДС позволяет получить следующие преимущества:

Выделение более производительного ПК, нежели ПК ОДС, для обработки учетной информации;

Хранение в одном месте данных нескольких ОДС района;

Выполнение дублирования (резервирования) учетных данных;

Повышение скорости обработки информации.

Исходя из направления информационных потоков АСКУЭ, предполагается передача учетной информации только с ОДС в ЕССД. Частота передачи определяется дискретностью представления данных АСКУЭ и составляет период не менее 1 часа для архивных и не менее 10 минут для мгновенных значений ПУ. Канал связи между ОДС и ЕССД разумно строить на технологии, обеспечивающей создание локальной сети компьютеров (оптика, радиоканал и т.п.), при этом необходимо предусмотреть возможность подключения отдельных ОДС по модемным линиям. Как правило, компьютерные каналы ОДС - УО уже существуют.

Для организации ЕССД необходимо реализовать однонаправленную, вероятностную схему репликации.

Процесс репликации организован по следующему принципу:

RServer периодически опрашивает локальные БД ОДС;

RClient формирует файл с новыми данными ПУ, полученными с момента последней репликации;

RServer обрабатывает файл, вносит изменения в серверную БД.

Окно приложения RServer представлено на рис. 1. В окне показаны зарегистрированные объекты репликации (ОДС), состояние канала ОДС - ЕССД, а также время последней репликации.

Рис. 1. Главное окно приложения RServer


Для снижения нагрузки на канал передачи данных программы RClient и RServer реализуют механизм потокового сжатия данных.

Взаимодействие с внешними информационными системами


Под взаимодействием будем понимать передачу (или, в общем случае, предоставление) данных АСКУЭ для их последующей обработки (производства начислений, контроля, анализа) сторонними программными средствами.
Возможные участники информационного взаимодействия представлены в табл. 1.

Таблица 1. Участники информационного взаимодействия с АСКУЭ




Были рассмотрены несколько вариантов представления данных учета энергоресурсов:
- генерации и передачи отчетов за определенный период в установленной форме;
- прямой доступ к БД АСКУЭ;
- реализация надстройки над БД АСКУЭ, поддерживающей унифицированный протокол.

В первом случае отчеты формируются оператором АСКУЭ с помощью программы ASUDBase, входящей в состав специализированного программного обеспечения АСУД-248 в соответствии с установленным регламентом взаимодействия.

В отчетной форме на бумажном или электронном носителе информация предоставляется в адрес ЕИРЦ, энергоснабжающих (энергосбытовых) и водоснабжающих организаций, контролирующих органов.

Следует отметить, что сам процесс передачи электронного файла нормативными документами не уточняется. Это фактически приводит к различным схемам пересылки файла от передачи из рук в руки, отправке по электронной почте, до применения серверов ftp, samba и т.п. Ни о какой проверке того, что файл является именно тем файлом, который был сформирован оператором АСКУЭ, речи не идет. Устранить указанную несогласованность можно с помощью введения электронной цифровой подписи в механизм взаимодействия АСКУЭ - ЕИРЦ. Данная схема реализуема на основе теории открытых ключей . После формирования файла оператор АСКУЭ подписывает его своим секретным ключом, а уполномоченный представитель ЕИРЦ перед производством расчетов проверяет целостность данных с помощью открытого ключа.

В процессе внедрения АСКУЭ приходилось также сталкиваться с просьбами о предоставлении прямого доступа к БД АСКУЭ для постоянного контроля и обновления данных ПУ сторонним программным обеспечением.

Данный способ информационного взаимодействия следует применять с максимальной осторожностью, уведомив заказчика о возможных последствиях, поскольку неверная работа стороннего приложения может привести к неработоспособности АСКУЭ в целом.

В то же время сотрудниками «Текон-Автоматика» выполняется надстройка над БД АСКУЭ, реализующая унифицированный протокол информационного взаимодействия, в виде OPC-сервера. Стандарт OPC позволяет внешним информационным системам, в том числе в режиме реального времени, получать информацию о состоянии ПУ.

Вопросы информационной безопасности


Построение любой информационно-вычислительной системы должно в настоящее время сопровождаться проработкой вопросов, связанных с обеспечением информационной безопасности обрабатываемых данных. Под информационной безопасностью будем понимать защищенность информации от следующих факторов :
- преднамеренных воздействий, нарушающих целостность сообщений, при которых мотивом нарушения конфиденциальности является намерение несанкционированного чтения, модификации, перехвата, навязывания законному получателю фальшивых сообщений и т. п.
- случайных воздействий, которые предполагают сбой аппаратуры, ошибки ПО, помехи в канале связи.

Одним из важнейших аспектов проблемы обеспечения безопасности информационной системы является определение, анализ и классификация возможных угроз. Перечень угроз, оценка вероятности их реализации - основа для проведения анализа риска и формулирования требований к системе защиты.

Рассматривая информационные потоки АСКУЭ, можно выделить места, уязвимые с точки зрения информационной безопасности.

Проанализируем следующие участки передачи данных:
- от первичного преобразователя до ПУ;
- от ПУ до концентратора;
- от концентратора до ПК ОДС;
- от ПК ОДС до сервера сбора информации;
- от сервера до внешних пользователей системы.

Участок 1. Возможные угрозы на данном этапе связаны со следующими моментами:
- искажением информации, поступившей с первичных преобразователей на ПУ (обрыв проводов, неверная установка и т.п.);
- в силу ценности частей узлов учета (термометров, манометров и т.п.) возможно их преднамеренное хищение (уничтожение);
- искажение настроек самого ПУ.

Решением проблемы является ограничение и жесткий контроль доступа в места установки ПУ. Как правило, существует возможность ограничить вход не только в подвал здания, но и оградить с помощью решеток непосредственное место установки ПУ, устраняя тем самым возможный доступ людей, имеющих право на вход в подвал, но не должных вмешиваться в работу ПУ. Следует отметить, что от 60 до 80 % угроз для любой информационной системы связаны с действиями действующих или бывших сотрудников организации. Необходимо в обязательном порядке производить опечатывание ПУ и блокировать его служебные функции для предотвращения доступа к системным настройкам.

Участок 2. Исходя из того, что концентратор предполагается устанавливать в непосредственной близости от ПУ, этот пункт может быть отнесен к рассмотренному выше.

В случае воздушной прокладки кабельных трасс и отсутствия в домах контуров защитного заземления возможен выход из строя концентратора вследствие грозы. Тем не менее даже при попадании грозы в линию предусмотренная схема гальванической развязки концентратора предотвратит негативные последствия для ПУ.

При подключении квартирных приборов учета концентратор устанавливается в распределительном щитке. И хотя несанкционированный доступ к концентратору приведет к аварийному сигналу на ПК диспетчера, допускается возможность искажения информации злоумышленником. В силу этого необходимо предусмотреть контрольные сверки показаний конечных ПУ с информацией в системе АСКУЭ с интервалом не реже 1 раза в год, а в случаях сбоя - непосредственно по каждому случаю.

Участок 3. Может быть наиболее уязвим с точки зрения информационной безопасности в силу своей протяженности. Однако искажение данных можно предотвратить, применяя при передаче контрольные суммы, а конфиденциальность информации (если это действительно необходимо) путем применения в ПО концентраторов криптографических алгоритмов, основанных, например, на псевдослучайных последовательностях.

Участок 4. Целостность и сохранность информации, передаваемой на данном участке, может быть обеспечена применением стандартных средств. Например, можно программно реализовать в приложениях поддержку протокола SSL или применить другие программно-аппаратные средства защиты информации при передаче ее по открытым компьютерным сетям . Кроме того, должен быть обеспечен соответствующий уровень безопасности и самого ПК диспетчера ОДС, с разграничением прав доступа и т.п.

По возможности не следует объединять ПК ОДС на основе открытых сетей общего пользования (локальные городские сети доступа в Интернет) в силу высокой вирусной активности и невысокой надежности данных сетей. В противном случае рекомендуется на базе оборудования провайдера связи организация VLAN (Virtual LAN - локальной виртуальной сети), объединяющая аппаратные средства АСКУЭ в независимую среду информационного обмена.

Участок 5. В целом полностью аналогичен участку 4, за исключением того, что информационный обмен с большей вероятностью подразумевается изначально по открытым каналам связи (возможно, и с использованием Интернета), что ставит повышенные требования к идентификации, аутентификации и авторизации удаленных пользователей. Дополнительно следует максимально ограничить список доступных им функций по управлению системой.

Целесообразным считается применение VPN-решений (Virtual Private Network - виртуальные частные сети) для обеспечения должного уровня информационной безопасности.

В заключение следует отметить важный факт: устойчивость всей системы информационной защиты определяется устойчивостью ее слабейшего звена. Отсюда следует, что защита информации в вычислительных системах может осуществляться лишь в комплексе; отдельные меры не будут иметь смысла.

Порядок ввода АСКУЭ в промышленную эксплуатацию


Жизненный цикл любой автоматизированной информационной системы состоит из 5 основных стадий :
- разработка или приобретение готовой системы;
- внедрение системы;
- сопровождение программного обеспечения;
- промышленная эксплуатация системы;
- демонтаж системы.

Стадии жизненного цикла системы перекрываются, как показано на рис. 2, а продолжительность каждой стадии в общем случае зависит от многих факторов. Из рисунка следует то, что система должна обслужиться сразу после начала эксплуатации.

Рис. 2. Стадии жизненного цикла автоматизированных систем


Процесс ввода АСКУЭ в промышленную эксплуатацию на конкретном объекте можно разбить на несколько этапов в соответствии с рис. 3.

Рис. 3. Этапы ввода АСКУЭ в промышленную эксплуатацию


Помимо указанных мероприятий, каждая устанавливаемая АСКУЭ должна быть проверена уполномоченной организацией по месту установки. В качестве организации, проводящей поверку, может выступать Всероссийский научно-исследовательский институт метрологической службы (ВНИИМС) или ФГУ «Ростест-Москва».

Процедура поверки включает в себя сбор и проверку необходимой документации, а также проведение контрольно-измерительных мероприятий, направленных на выявления ошибок функционирования АСКУЭ. Ошибки могут быть связаны как с неправильным монтажом АСКУЭ, так и с некорректной работой ПУ.

В случае успешного завершения процедуры поверки, выдается свидетельство. В противном случае, при обнаружении недостатков в работе системы, поверяющая организация указывает на них и назначает дату повторного проведения процедуры.

Только после этого АСКУЭ может законно выполнять функции коммерческого учета. Без свидетельства о поверке АСКУЭ фактически может использоваться лишь как система технологического контроля и мониторинга состояния объекта.

Фрагмент статьи в PDF


Интеграция АСКУЭ в единую общегородскую информационную систему


Текущие тенденции развития локальных специализированных информационных систем предполагают их интеграцию в общегородскую структуру мониторинга и управления.

Развитие информационных технологий и организация высокоскоростных каналов передачи данных позволили рассматривать возможность создания единой общегородской информационной системы (ЕОИС).

В задачу ЕОИС входит объединение всех городских владельцев и потребителей информации в единую систему обмена данными, что позволит:
- предоставить префектам и соответствующим службам города в реальных масштабах времени интегрированную информацию в виде электронных карт, схем, таблиц о текущей обстановке в ЖКХ, что позволит повысить эффективность управления городским хозяйством;
- объединить в едином информационном пространстве все предприятия ЖКХ;
- снизить затраты на эксплуатацию и ремонт коммунальной инфраструктуры города;
- создать в ЖКХ новые интеллектуально-насыщенные рабочие места;
- свести к минимуму неэлектронный обмен данными;
- предоставить населению доступ к информационным источникам;
- обеспечить устойчивость работы служб ЖКХ.

Проработка концепции создания ЕОИС началась в конце 1990-х годов для обеспечения координации действий городского управления .

Высокая социальная и экономическая значимость информации АСКУЭ указывает на необходимость создания общегородского центра обработки данных ПУ. В задачу этой единой автоматизированной системы учета и потребления энергоресурсов (АСКУПЭ) входит интеграция данных локальных АСКУЭ различных производителей и предоставления их в пространстве ЕОИС.

Для взаимодействия различных АСКУЭ с АСКУПЭ необходима выработка общего протокола и регламента информационного взаимодействия. Это может быть:
- межбазовый обмен данными;
- разработка собственного протокола обмена данными;
- использование существующих протоколов.

Поскольку прямой доступ к БД рассматривается специалистами как крайне нежелательный, разработка собственного формата обычно является вынужденной мерой и может затруднить добавление в систему нового оборудования, желательно использование общепринятого стандарта. В силу того что на уровне АСКУПЭ подразумевается наличие высококвалифицированного обслуживающего персонала, рекомендуется строить взаимодействие на основе стандарта OPC.

Технология OPC (OLE for Process Control) разрабатывалась с учетом взаимодействия гетерогенных (неоднородных) систем . Согласно концепции OPC, оборудование нижнего уровня подключается к системе верхнего уровня (OPC-клиент) через программный шлюз (OPC-сервер), имеющий стандартизированный протокол обмена данными. При таком подходе задача подключения нового оборудования любого производителя к системе сводится к локальной задаче настройки шлюза OPC-клиент / OPC-сервер.

Наличие OPC-сервера является гарантией совместимости любого устройства с любой современной SCADA-системой, которая может быть использована на верхнем уровне АСКУПЭ.

Литература

1. Энергетическая стратегия России на период до 2020 года. Утв. распоряжением Правительства РФ № 1234-р: [принят от 28.03.2003].
2. Иванов А.С. Внедрение автоматизированных систем учета энергоресурсов в жилищно-коммунальном хозяйстве // Вестник поморского университета. Серия «Естественные и точные науки». Архангельск: ПГУ им. Ломоносова, 2006. С. 179-182.
3. Иванов А.С., Тарасенков М.А., Лукичев А.Ю., Серов И.В., Грудин Д.В. Построение системы АСКУЭ на базе автоматизированной системы диспетчеризации АСУД-248 // Информатизация и системы управления в промышленности. М., 2006. С. 4-13.
4. ASUDBase (программа интерпретации учетных данных): Свидетельство об официальной регистрации программы для ЭВМ № 2006612658 РФ / Иванов А.С. (РФ); .
5. Романец Ю.В., Тимофеев П.А., Шаньгин В.Ф. Защита информации в компьютерных системах и сетях / Под ред. В.Ф.Шаньгина. М.: Радио и связь, 1999. 328 с.
6. Зима В.М. и др. Безопасность глобальных сетевых технологий. СПб.: BHV, 2001. 320 с.
7. SSL 3.0 Specification / http://wp.netscape.com/eng/ssl3
8. Stunnel ‑ Universal SSL Wrapper / http://www.stunnel.org
9. Ефимов Г. Жизненный цикл информационных систем // Сетевой: эл. журн. ЗАО «Издательский дом мировой периодики», 2001. № 2; http://www.setevoi.ru/cgi-bin/text.pl/magazines/2001/2/44
10. Проект «Информационная Сеть жилищно-коммунального хозяйства города»: Предварительное ТЭО. 3-я ред. М., Зеленоград, 1998. 32 с.
11. Росаткевич Г.К., Краснобаев В.В. Единая автоматизированная система диспетчерского контроля и управления городским хозяйством на базе московской волоконно-оптической сети // Энергосбережение. М.: АВОК, 1999. № 5;
www.abok.ru/for_spec/articles.php?nid=211
12. Мартынов Ю.И. Применение SCADA-систем для построения программного обеспечения АСУ энергетикой промышленных предприятий // Проблемы и перспективы прецизионной техники и управления в машиностроении / ИПТМУ РАН. Саратов: СГТУ, 2002. С. 57-5

учета энергоресурсов в зданиях и сооружениях

на основе технологий беспроводных сенсорных сетей и интеллектуальных датчиков

Интеллектуальная энергосберегающая система учета энергоресурсов в зданиях и сооружениях на основе технологий беспроводных сенсорных сетей и интеллектуальных датчиков (далее – ИЭС) предназначена для автоматизированного учета энергоресурсов, регулирования потребления энергоресурсов и диспетчеризации энергоресурсов (учета тепла, учета тепловой энергии, учета воды, учета электроэнергии), а также передачи тревожных извещений в интересах снижения расходов конечных пользователей, теплоснабжающих и эксплуатирующих организаций, ЖКХ, обеспечения комфортных условиях проживания и предотвращения аварийных и чрезвычайных ситуаций.

Интеллектуальная энергосберегающая система учета энергоресурсов выполняет функции:

  • индивидуального (поквартирного) многотарифного учета горячей и холодной воды и учета электрической энергии;
  • индивидуального (поквартирного) получения и накопления исходных данных (температуры радиаторов отопления и температуры в жилых помещениях) для расчета потребленной тепловой энергии с использованием пропорциональной схемы на основе данных общедомового счетчика тепловой энергии;
  • обработки, накопления и сохранения в энергонезависимой памяти и выдачи по каналам связи сети Интернет по запросу и в плановом режиме данных об энергопотреблении на районный (городской) сервер учета и диспетчеризации энергопотребления;
  • мониторинга и визуализации данных о потребленных энергоресурсах с использованием WEB-интерфейса в удобном для конечного пользователя виде;
  • предотвращение аварийных ситуаций на основе обнаружения протечек воды и обнаружения фактов ненормативного (нестандартного) расходования энергоресурсов;
  • диспетчеризации потребления горячей и холодной воды при предотвращении аварийных ситуаций и по командам с районного сервера учета и диспетчеризации энергопотребления;
  • диспетчеризации потребления электроэнергии при предотвращении аварийных ситуаций и по командам с районного сервера учета и диспетчеризации энергопотребления;
  • автоматического регулирования температуры в отапливаемых помещениях с использованием суточных и недельных установок желаемой температуры;
  • взаимодействия с типовым датчиками охранно-пожарной сигнализации, реализации режимов дистанционной постановки и снятия квартиры с охраны, «Тревожной кнопки», извещения о возгорании, утечки газа, протечки воды с передачей тревожных событий на общеобъектовый концентратор и выбранным абонентам сетей GSM;
  • защиты системы от несанкционированного доступа и неквалифицированного использования;
  • дистанционной настройки и конфигурирования приборов в составе системы при помощи стандартизованных протоколов;
  • ведения архивов на районном сервере учета и диспетчеризации энергопотребления и выдачи их на удаленные клиентские рабочие места органов государственной власти и управления, энергоснабжающих организаций, управляющих компаний, товариществ собственников жилья и т.д.

Состав и характеристики система учета энергоресурсов :
1. Квартирный блок, конструктивно устанавливаемый, например, в силовом щитке или в любом другом удобном месте, обеспечивающем доступ к сети 220 В и к компьютерной проводной сети Ethernet:

  • интерфейсы связи – TCP/IP Ethernet, RS-485, MiWi, GSM (при наличии роутера);
  • число поддерживаемых беспроводных модулей по интерфейсу MiWi – до 45;
  • дальность радиосвязи - до 30…100 м. (зависит от конкретных условий использования, в частности от типа стен помещений – кирпич, бетон и т.п.);
  • накопление информации (до нескольких часов, в зависимости от числа подключенных модулей учёта) при отсутствии связи с сервером и последующая досылка накопленной информации после восстановления связи;
  • поддержка двух серверов (основного и резервного) с автоматическим переходом с одного на другой при исчезновении связи;
  • резервирование каналов связи с сервером – основной канал: LAN Ethernet (витая пара, коннектор RJ-45), резервный: GPRS GSM (при наличии GSM роутера);
  • сохранение работоспособности функций регулирования температуры и диспетчеризации при отсутствии связи с сервером.

Примечание: квартирный блок используется в индивидуальном варианте использования и в качестве средства накопления и передачи данных модулей учета общедомового расхода энергоресурсов .
2. Модуль учета и диспетчеризации водоснабжения:

  • счетчики холодной и горячей воды с импульсным выходом с установочным диаметром 1/2, 3/4;
  • краны с электроприводом с установочным диаметром 1/2, 3/4;
  • беспроводной цифровой термометр с точностью измерения температуры 0,1°С;
  • преобразователь «счетный выход-радиоинтерфейс» БСИ-01;
  • беспроводный датчик утечки воды БДУВ-01;
  • модуль управления вентилями с радиодоступом МУВ-01.

3. Модуль учета и регулирования теплоснабжения в составе:

  • электрически управляемого (или ручного термостатического) вентиля;
  • радиаторных и комнатных цифровых термометров с радиоинтерфейсом.

4. Модуль учета и диспетчеризации электроснабжения:

  • электросчетчик со счетным выходом;
  • реле-ограничителя потребляемой электрической мощности;
  • блок сопряжения с реле-ограничителем (модуль управления нагрузкой с радиодоступом МУН-01);
  • преобразователь «счетный выход-радиоинтерфейс» БСИ-01.

5. Модуль учета общедомового расхода энергоресурсов:

  • квартирный блок в варианте учета общедомового расхода энергоресурсов;
  • стандартные объектовые (общедомовые) приборы учета энергоресурсов с интерфейсами RS-485, ETHERNET.

6. Ретранслятор радиосети РРС-01 (для больших помещений со сложной планировкой и частной застройки).
7. ИК датчик движения беспроводный ОДП-01.
8. Пожарный датчик беспроводный ПДБ-01.
9. Районный (городской) сервер сбора и обработки данных об энергопотреблении зданий и сооружений с сетевым доступом, статическим сетевым адресом и системой бесперебойного питания
10. Серверное программное обеспечение (ПО):

  • Операционная система - Windows или Linux (Unix);
  • Емкость адресного пространства для подключения квартирных блоков (индивидуальных потребителей) составляет 65535 шт. (до 200…300 многоквартирных жилых домов), реальное количество приборов зависит от производительности компьютера, скорости передачи линий связи, интенсивности обмена данными;
  • Непрерывная архивация данных, получаемых от объектов;
  • Повышенная отказоустойчивость и минимальные требования к аппаратным средствам.

11. Клиентское ПО:

  • Операционная система - Windows или Linux (Unix)
  • Отображение текущих (он-лайн) данных как в текстовом (табличном), так и в графическом виде (в виде графиков).
  • Просмотр архивов за заданный пользователем интервал времени в текстовом и табличном виде.
  • Возможность выборочной блокировки (отключения) потребителей.
  • Удаленная настройка объектового оборудования (клиентское ПО для инженера системы).

Структурная схема интеллектуальной энергосберегающей система учета энергоресурсов приведена на рис. 1.

Рис. 1 – Структурная схема интеллектуальной энергосберегающей система учета энергоресурсов

Порядок работы интеллектуальной энергосберегающей система учета энергоресурсов .
Данные с импульсных выходов счётчиков холодной и горячей воды поступают на вход преобразователя «счетный выход-радиоинтерфейс» БСИ-01, который подсчитывает число импульсов и передает эти данные по беспроводной сети Mi-Wi на квартирный блок, который производит расчёт текущего значения величины расхода холодной и горячей воды с сохранением результата в энергонезависимой памяти. Затем квартирный блок транслирует их посредством Enternet на районный сервер учета и диспетчеризации энергоснабжения. Преобразователь «счетный выход-радиоинтерфейс» БСИ-01 имеет батарейное питание.

Квартирный блок со снятой верхней крышкой и квартирная панель управления (справа)

Одновременно с учетом расхода воды осуществляется непрерывный мониторинг температуры трубопровода горячей воды с использованием устанавливаемого на нем беспроводного датчика температуры. Измерение температуры осуществляется через заданное время (20…30 секунд) после начала текущего цикла расхода и, при выходе температуры за нормативные параметры, осуществляется передача информации об этом факте на квартирный блок с ретрансляцией данных на районный сервер энергопотребления. Это необходимо для реализации законных прав пользователей на снижение расходов при ненормативном энергоснабжении.
При срабатывании беспроводного датчика утечки воды БДУВ-01 осуществляется передача информации об этом на квартирный блок. На основании заданного алгоритма квартирный блок принимает решение о диспетчеризации (перекрытии подачи) холодной и горячей воды, о чем выдается соответствующая индикация на квартирную панель. Команда на перекрытие воды выдается по беспроводной сети на модуль управления вентилями МУВ-01 и ретранслируется им на исполнительное устройство – шаровый кран. После исполнения команды выдается подтверждающая квитанция на квартирный блок. Кроме описанного, может быть использовано принудительное перекрытие холодной и горячей воды с районного сервера учета диспетчеризации энергоресурсов при отсутствии оплаты, необходимости жесткого лимитирования расхода и т.д., а также диспетчеризация воды по командам пользователя.
Порядок учета и диспетчеризации электроэнергии аналогичен порядку учета и диспетчеризации водоснабжения.
Учет и регулирование теплоснабжения осуществляется следующим образом. Данные о температуре радиатора отопления и температуре в отапливаемом помещении с заданной периодичностью (100…300 секунд) передаются на квартирный блок. При использовании ручного термостатического вентиля указанные данные накапливаются в энергонезависимой памяти и после усреднения с циклом 3…5 минут выдаются на районный сервер энергопотребления. При использовании автоматического электронного регулирования температуры с использованием специального программного обеспечения квартирного блока реализуется контур автоматического поддержания заданной температуры на основе модифицированного пропорционального регулирования с выработкой команд управления электрическим вентилем. В качестве исходных данных для регулирования используются суточные и недельные программы (профили) регулирования, устанавливаемые пользователем посредством квартирной панели или WEB-интерфейса по сети. Одновременно с учетом данных о комнатной температуре и температуре радиаторов отопления осуществляется контроль за состоянием элементов питания всех беспроводных устройств, имеющих батарейное питание. Расчет потребленной тепловой энергии каждым индивидуальным потребителем осуществляется с использованием специального программного обеспечения районного сервера энергопотребления на основе пропорционального принципа по данным о зафиксированных температурах, теплоотдаче установленных радиаторов и данных обещедомового расхода.

Радиатор отопления с установленным на нём модулем измерения температур (справа).

На районном сервере учета и диспетчеризации энергопотребления, получаемые через Интернет от квартирных блоков данные, архивируются для последующего использования. Сервер включен круглосуточно, обладает необходимыми средствами резервирования данных и располагается в специально отведённом помещении. К серверу подключаются удаленные клиентские рабочие места со специальным программным обеспечением для работников органов государственной власти, энергоснабжающих организаций, управляющих компаний, товариществ собственников жилья и биллинговых систем расчета. Клиентское программное обеспечение имеет удобный дружественный интерфейс пользователя, позволяющий наблюдать (графика, таблицы), статистически обрабатывать и анализировать информацию об энергопотреблении.
Клиентское программное обеспечение даёт возможность блокировать потребителей. При этом после того как оператор отдал команду блокировки, она с клиентского рабочего места поступает на сервер энергопотребления, затем на квартирный блок. С квартирного блока команда ретранслируется на соответствующий модуль, включающий исполнительный механизм диспетчеризации.

Подключение и настройка интеллектуальной энергосберегающей система учета энергоресурсов .
Питание модуля управления вентилями МУВ-01 осуществляется от источников электропитания (далее источник электропитания) с номинальным напряжением 12 В. Отклонения напряжения должны лежать в пределах от минус 15 % до плюс 10 % номинального значения. Источник электропитания для устройства должен быть рассчитан на максимальный ток до 1 А.

Рис. 2 - Cхема подключения МУН-01

Краны шаровые подключаются к плате МУН-01 к выходам реле.

Подключение импульсного выхода счётчика (воды, эл.энергии и т.п.) к плате БСИ-01 осуществляется к клеммам счетного входа при этом один вывод импульсного выхода счётчика подключается к общему выводу платы («минус» питания), а другой - к клемме входа канала (см. рис. 3).

Рис. 3 - Схема подключения устройства БСИ-01

Платы БСИ-01 и МУН-01 питаются от литиевого батарейного источника питания напряжением +3В, однако возможно и подключение внешнего источника с напряжением +3…5В.

Питание квартирного блока, включающего в себя плату сетевого концентратора (рис. 4.) осуществляется от источников электропитания с номинальным напряжением 12 В. Отклонение напряжения должны лежать в пределах от минус 15 % до плюс 10 % номинального значения. Источник электропитания для устройства должен быть расчитан на максимальный ток до 1 А.

Рис. 4 – Модуль беспроводной сети квартирного блока

Настройка параметров интеллектуальной энергосберегающей система учета энергоресурсов может осуществляться как с сервера, так и через доступ при помощи терминала «Telnet».
Алгоритм ввода в эксплуатацию нового прибора (беспроводного модуля):

  • Оператор отправляет выбранному квартирному блоку команду поиска нового беспроводного устройства. После этого беспроводная сеть переходит в режим ожидания подключения прибора с заводским адресом (по-умолчанию имеющему значение, равное 255).
  • Оператор нажимает и удерживает 3…5 секунд специальную кнопку на добавляемом в сеть устройстве (беспроводном модуле), после чего устройство устанавливает связь с сетевым узлом (квартирным блоком). При этом в случае, если устройство находится в радиусе действия одновременно нескольких беспроводных сетей (соседских квартирных блоков), то оно подключатся только к той сети, которая была до этого переведена в состояние ожидания (см. пункт 1).
  • Подключенное устройство высылает свои заводские настройки (тип модуля, тип датчиков, значения масштабных коэффициентов для пересчёта показаний датчика (счетчика) в значение конкретной физической величины и т.п.) квартирному блоку, который затем передаёт полученные настройки на сервер, а тот в свою очередь – в специальную программу утилиту-клиент для администрирования системы. После этого, для оператора отображается форма (Рис. 2.) конфигурирования прибора с уже заполненными полями, исходя из полученных заводских настроек.
  • Оператор при необходимости корректирует некоторые поля (адрес прибора, его наименование и т.п.) в указанной форме настроек и нажимает кнопку «Применить». Введённые настройки отправляются на сервер, затем – через квартирный блок (ретранслятор локальный) в добавляемое устройство, где сохраняется в энергонезависимой памяти.
  • После проведенных действий устройство оказывается подключенным к беспроводной сети и для подтверждения высылает обратно на Сервер только что полученные новые настройки.

Перед первым подключением ретранслятора локального (РЛ-01) к сети LAN-Ethernet необходимо, чтобы системный администратор, обслуживающий данную сеть, назначил для подключаемого прибора, как для сетевого устройства, IP-адрес и маску подсети (заводские установки см. в табл. 1), а также обеспечил доступ к серверу сбора данных TCP порт 2021.

Таблица 1 – Заводские установки сетевых параметров



п/п

Параметр

Значение

00:04:A3:01:03:(83...88)

Собственный IP-адрес (IP v4)

IP-адрес шлюза

Маска подсети

Предпочтительный DNS-сервер

Альтернативный DNS-сервер

Для получения доступа к WEB-интерфейсу необходимо набрать в аресной строке браузера IP-адрес устройства (по умолчанию 192.168.10.180).
На экране отобразиться страница приветствия WEB-интерфейса. (рис. 5).

Рис. 5 – Стартовая страница WEB-интерфейсаинтеллектуальной энергосберегающей система учета энергоресурсов

Доступ к стартовой странице не требует ввода пароля.
В левой стороне расположено главное меню WEB-интерфейса интеллектуальной энергосберегающей система учета энергоресурсов:

  • Главная
  • Устройства
  • Конфигурация
  • Суточные профили
  • Недельные профили
  • Сеть TCP/IP
  • Сеть GSM
  • Журнал
  • Тех.поддержка

Для входа на каждую из данных страниц (кроме «Тех. поддержка») необходим ввод логина/пароля (по-умолчанию Admin/start) в форму авторизации (рис. 6).

На странице WEB-интерфейса «Устройства» пользователь может просмотреть список всех устройств, подключенных к квартирному блоку, а также значения текущих показаний по выбранному модулю учёта (рис. 7).
Также отображается статус устройства в радиосети (подключено/отключено) и время его последней активности. Это позволяет оперативно и наглядно оценить работу системы (качество связи с устройствами, темп обмена данными и т.п.).
По каждому из приходящих от устройств значений отображается время измерения, что позволяет в любой момент иметь чёткое представление об актуальности данных.
При разработке WEB-интерфейса была использована технология AJAX , Ajax (от англ. Asynchronous Javascript and XML - «асинхронный JavaScript и XML») - подход к построению интерактивных пользовательских интерфейсов веб-приложений, заключающийся в «фоновом» обмене данными браузера с веб-сервером. В результате, при обновлении данных, веб-страница не перезагружается полностью, а веб-приложения становятся более быстрыми и удобными. Это позволяет пользователю наблюдать в реальном времени изменения параметров не нажимая всё время кнопку браузера «Обновить».

Рис. 7 – Страница WEB-интерфейса системы учета энергоресурсов - «Устройства»

На странице WEB-интерфейса системы учета энергоресурсов «Конфигурация» выводится полная информация о составе БСС, параметрах входящих в неё устройств и т.п. (рис. 8).

Рис. 8 - Страница WEB-интерфейса системы учета энергоресурсов - «Конфигурация»

На странице «Суточные профили» системы учета энергоресурсов (рис. 9) пользователь может задавать до 4-х различных (согласно ТЗ) суточных профилей регулирования температуры. В каждом таком профиле присутствуют по 4 временных интервала, на протяжении которых поддерживается определённое значение температуры. Таким образом, можно, например, сформировать для системы учета энергоресурсов профили выходного дня (когда всё время, кроме ночи поддерживается высокая температура) и буднего (рабочего) дня (когда все проживающие находятся вне квартиры - температуру можно снижать) благодаря чему достигается экономия энергоресурсов.

Рис. 9 – Страница WEB-интерфейса системы учета энергоресурсов - «Суточные профили»

Пользователь имеет возможность задавать до двух недельных профилей изменения температуры, каждый из которых определяет - по какому из 4-х суточных профилей осуществлять регулирование температуры в каждый из 7-ми дней недели. Редактировать недельные профили можно на странице WEB-интерфейса «Недельные профили» (рис. 10).
На последующих страницах WEB-интерфейса («Сеть TCP/IP», «Сеть GSM», «Журнал» и «Тех. поддержка») пользователь или администратор системы имеет возможность изменять сетевые настройки и просматривать протокол (журнал) событий.

Рис. 10 – Страница WEB-интерфейса системы учета энергоресурсов - «Недельные профили»

Квартирный блок системы учета энергоресурсов также имеет возможность подключения по Telnet. Это необходимо, прежде всего, инженерным работникам, занимающимся пуско-наладкой и обслуживанием ИЭС. В режиме доступа по Telnet можно получить существенно более подробную информацию о состоянии системы, по сравнению с WEB-интерфейсом. (рис. 11).

Рис. 11 – Просмотр состояния системы учета энергоресурсов при помощи Telnet

Используя доступ через Telnet, можно в реальном времени отслеживать следующие параметры системы учета энергоресурсов:
- список устройств, их тип;
- наличие связи по беспроводной сети для каждого из устройств;
- статус последней отправки данных устройству («готов», «занят», «ошибка» и т.п.);
- входящий и исходящий трафик (объём данных) по каждому из устройств;
- время последнего сеанса радиосвязи с устройством;
- время получения последних данных о измеряемой величине;
- бортовое время квартирного блока;
- количество ошибок передачи / ошибок контрольной суммы (CRC), возникших в процессе передачи данных с момента включения квартирного блока;
- общее число зарегистрированных в беспроводной сети устройств / число устройств, находящихся на связи;
- состояние подключения к серверу;
- состояние очереди на отправку сообщений устройствам;
- напряжение питания квартирного блока;
- время работы квартирного блока от момента включения.

Рис. 12 - Окно настройки устройства системы учета энергоресурсов через Telnet

При использовании Telnet все команды вводятся в текстовом виде, при этом их перечень и требуемый синтаксис (форма записи) приведен в таблице 3.

Таблица 3 - Команды Telnet конфигурирования квартирного блока.

Команда (формат
записи)

Аргументы
(параметры)

Описание
(выполняемые действия)

Отображает текущие сетевые настройки системы учета энергоресурсов.

disconnect server

Разрывает соединение с сервером системы учета энергоресурсов

Номер объекта

Устанавливает номер объекта системы учета энергоресурсов (адрес квартирного блока).

serv=XXXXXXXX...

URL-адрес сервера

Устанавливает URL-адрес сервера системы учета энергоресурсов

Номер TCP-порта для подключения к серверу

Устанавливает номер TCP-порта для подключения к серверу системы учета энергоресурсов.

Собственный
IP-адрес устройства

Устанавливает собственный
IP-адрес устройства

Маска подсети

Устанавливает маску подсети системы учета энергоресурсов

IP-адрес сетевого шлюза

Устанавливает IP-адрес сетевого шлюза системы учета энергоресурсов

addr=X ch=Y val=Z

X-адрес беспроводного модуля,
Y-номер канала,
Z-новое значение

Устанавливает новое значение по заданному каналу выбранного беспроводного модуля. Может, например, использоваться для ручного управления нагрузкой.

X-текущий адрес беспроводного модуля, Y-новый адрес

Изменяет адрес беспроводного модуля системы учета энергоресурсов.

Отображает список всех зарегистрированных беспроводных модулей (их адреса, наименование, тип и т.п.)

X-адрес беспроводного модуля

Отображает текущие значения всех параметров по всем каналам для заданного беспроводного модуля.

add addr=X type=Y

X-адрес добавляемого беспроводного модуля, Y-тип модуля*

Добавляет в систему новое устройство (беспроводной модуль) заданного типа.

X-адрес удоляемого беспроводного модуля,

Удаляет из системы устройство (беспроводной модуль).

X-начальный номер записи протокола, Y-конечный номер.

Отображает заданный диапазон записей сообщений, переданных на сервер.

link addr=X to Y ch=Z

X-адрес датчика температуры,
Y и Z-адрес и номер канала модуля управления нагрузкой, соответственно.

Подключает выбранный беспроводной датчик температуры к требуемому каналу заданного модуля управления нагрузкой, формируя таким образом контур автоматического регулирования температуры.

XXXXX...-текст, отображаемый на панели

Отправляет текстовое сообщение на квартирную панель. (Аналог текстового информационного сообщения с сервера).

Активирует механизм загрузки обновления встроенного ПО.

Выполняет сброс (перезагрузку) устройства

reset to default

Выполняет сброс устройства на заводские устновки.

Завершает работу Telnet-терминала.

Отображает встроенную справку.

*– возможные значения параметра «тип модуля»:
0 – Неизвестное устройство;
1 - Ретранслятор локальный ETERNET/GSM (РЛ-01) ;
2 - Модуль управления нагрузкой ЖКХ с радиодоступом (МУН-01);
3 - Беспроводный распределитель тепла (БРТ-01);
4 - Беспроводный счетчик импульсов (БСИ-01);
5 - Ретранслятор радиосети (РРС-01);
6 - Квартирная панель индикации и управления (КПИУ-01);
7 - Приемо-передающее устройство (ППУ-01);
8 - Охранный ИК датчик движения беспроводный (ОДП-01);
9 - Пожарный датчик беспроводный (ПДБ-01);
10 - Беспроводный датчик утечки воды (БДУВ-01);
11 - Охранный модуль;
12 - Беспроводной датчик температуры (БДТ-01).

Краткое описание клиентского и серверного программного обеспечения системы учета энергоресурсов .

Внешний вид серверного программного обеспечения системы учета энергоресурсов приведен на рис. 13.

Рис. 13 - Серверное программное обеспечение (ПО) системы учета энергоресурсов

Клиентское ПО системы учета энергоресурсов включает 2 клиентских приложения:

    • Клиентское ПО системы учета энергоресурсов для настройки системы и просмотра показаний приборов в режиме On-Line (клиент для инженера и оператора системы);
    • Клиентское ПО системы учета энергоресурсов для учета энергопотребления объектов ЖКХ, предназначенное для определения и визуализации потребления абонентами энергоресурсов за заданный период времени (клиентское ПО для ТСЖ и управляющих компаний).

Внешний вид клиентского ПО системы учета энергоресурсов приведен на рис. 14. На вкладке «Состояние объекта» выводятся данные, получаемые в реальном режиме времени с объектового оборудования. В левой панели выводится список устройств, подключенных к серверу. На вкладке «Состояние объекта» выводятся данные, полученные с прибора, наличие тревоги, а также состояние подключения прибора к серверу и актуальность полученных данных.

Рис. 14 - Клиентское ПО системы учета энергоресурсов, вкладка «Состояние объекта»

На вкладке «On-line просмотр» выводятся данные, получаемые с приборов, в графическом виде (рис. 15).

Рис. 15 - Клиентское ПО системы учета энергоресурсов, вкладка «On-line просмотр»

Клиентское ПО системы учета энергоресурсов для учета энергопотребления объектов ЖКХ:

    • обеспечивает ведение базы данных, содержащей информацию об абонентах (юридических и физических лицах), приборах энергоучета и тарифах оплаты услуг энергопотребления;
    • обеспечивает импорт данных об энергопотреблении с нескольких серверов системы учета энергопотребления;
    • позволяет просматривать детализацию потребления электроэнергии для отдельного абонента (или для группы абонентов / объектов) за заданный временной интервал (рис. 16).
    • позволяет просматривать распределение потребления энергоресурсов между абонентами или объектами ЖКХ за заданный временной интервал (рис. 17).
    • поддерживает формирование квитанций об оплате услуг ЖКХ (рис. 18), определение баланса абонентов, формирование списков должников.
    • поддерживает формирование отчетов о потреблении энергоресурсов абонентами за заданный период времени (рис. 19).

Рис. 16 - Просмотр суммарного потребления холодной воды объектом с детализацией 1 сутки

Рис. 17 - Просмотр распределения потребления электроэнергии между абонентами

Рис. 18 - Пример квитанции об оплате, сформированной клиентским приложением системы учета энергоресурсов

Рис. 19 - Пример отчета о потреблении электроэнергии абонентами системы учета энергоресурсов

Рис. 19 - Интеллектуальная энергосберегающая система учета энергоресурсов на основе технологий беспроводных сенсорных сетей и интеллектуальных датчиков в здании торгового центра.

Коммерческий учет электроэнергии осуществляется для обеспечения финансовых расчетов между предприятиями, генерирующими и распределяющими электроэнергию, и потребителями. Также применяется и технический учет энергии, который призван обеспечить предоставление информации о расходовании электричества на предприятии с разбивкой по отдельным подразделениям, технологическим цепочкам и единицам оборудования, относительно к единице производимой продукции и т.д.

Как правило, на современных предприятиях, особенно на энергоемких производствах, коммерческий и технический учет электроэнергии применяется в комплексе. Это дает возможность обеспечить прозрачность расчетов и открывает широкие возможности для энергосбережения. Для обеспечения коммерческого учета электроэнергии, а также и других энергоресурсов широкое применение получили автоматизированные системы АСКУЭ и АИИС КУЭ.

Коммерческий учет энергии при помощи автоматизированных систем

Коммерческий учет электроэнергии с использованием АСКУЭ и АИИС КУЭ применяется на предприятиях, осуществляющих генерацию и распределение электроэнергии для обеспечения автоматизированного дистанционного контроля производимой, транспортируемой и отпущенной энергии с максимальной точностью измерения. В то же время совершенствование технологий, появление новых приборов учета и новых интерфейсов обмена данными позволило значительно упростить такие системы, снизить их стоимость и сделать доступными для потребителей любого уровня. Благодаря этому сегодня системы АСКУЭ и АИИС КУЭ все более широко внедряются и эффективно используются как в промышленности, так и в коммунальной сфере.

Внедрение систем АСКУЭ и АИИС КУЭ сегодня фактически является необходимостью для многих промышленных предприятий с разветвленной структурой или энергоемким производством. Автоматизированный электронный учет обеспечивает максимальный уровень точности измерений и позволяет получать большой объем дополнительной информации, необходимой для оптимизации энергопотребления. Внедрение таких систем сводит практически к нулю трудозатраты на ведение учета даже при большом количестве приборов первичного учета и сложной структуре предприятия.

Автоматизированная система коммерческого учета электроэнергии выполняет следующие функции и имеет следующие возможности:

  • автоматический сбор данных с первичных измерителей и их периодическая передача на сервер;
  • долгосрочное хранение данных;
  • выполнение аналитических функций (анализ данных с целью оптимизации потребления или передачи электрической энергии);
  • выявление несанкционированного потребления электроэнергии;
  • удаленное подключение и отключение от сети конечных потребителей и т.д.

В отличии от АСКУЭ, система АИИС КУЭ представляет собой автоматизированное средство измерения, позволяющее осуществлять выход на оптовый рынок электроэнергии. Такие системы должны соответствовать требованиям ГОСТ Р 8.596-2002. Поэтому для их внедрения обязательным требованием является регистрация системы в качестве средства измерения в Госреестре, а также проведение ее аттестации контролирующим органом.

Примеры проектов по коммерческому учету электроэнергии

Компания «ЭНЕРГОАУДИТКОНТРОЛЬ» обеспечивает внедрение высокоэффективных систем автоматизированного коммерческого учета электроэнергии любого уровня сложности. Мы выполняем полный комплекс работ, начиная с проектирования системы, заканчивая ее вводом в эксплуатацию, а также осуществляем последующее обслуживание на самых выгодных условиях.

За время работы с 2003 года нами было реализовано большое количество проектов. Наши системы АСКУЭ и АИИС КУЭ используются крупнейшими отечественными корпорациями. В том числе нами были разработаны и внедрены следующие системы:

  • АСКУЭ ООО «Газпром» . Система обслуживает 127 компрессорных станций с использованием 6500 интеллектуальных приборов учета.