Расчет третьей и четвертой функции сложного процента. Шесть функций сложного процента это не так уж сложно! Вольнова Вера Александровна сертифицированный РОО оценщик недвижимости оценщик TEGoVA

Основой финансовой математики являются следующие шесть функций

сложного процента (или шесть функций денег):

1. Будущая стоимость единицы (накопленная сумма единицы) – FV (Future value ).

2. Будущая стоимость аннуитета (накопление единицы за период) – FVA (Future value of an annuity ).

3. Фактор фонда возмещения (периодический взнос в фонд накопления) – SFF (Sinking fund factor ).

4.Текущая стоимость единицы (дисконтирование, реверсия) – PV (Present value ).

5.Текущая стоимость аннуитета – PVA (Present value of annuity ).

6.Взнос на амортизацию единицы – IAO (Installment of amortize one ).

Эти функции используются в различных финансовых расчетах. Рассмотрим каждую из этих функций с точки зрения ее математической формулировки и сферы применения.

Функции наращения

Будущая стоимость денежной единицы (накопленная сумма единицы)

Данная функция позволяет определить будущую стоимость инвестированной денежной единицы, исходя из предполагаемых: ставки дохода (r), срока накопления (n) и периодичности (частоты) начисления процента (m):

FV = PV * (1+ r)n = PV * FМ1(r, n),

где FV – будущая стоимость денег;

PV – текущая стоимость денег;

r – ставка дохода;

n – число периодов накопления.

FМ1(r, n) = (1+ r)n – мультиплицирующий множитель, значения которого рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах. Иногда его обозначают как FVIF (от англ. Future Value Interest Factor – процентный множитель будущей стоимости).

Экономический смысл множителя FМ1(r, n) состоит в том, что он показывает, чему будет равна одна денежная единица через (n) периодов при заданной процентной ставке (r). Справедливость формулы очевидна (рисунок 6.7).

Если на депозит положена сумма PV, то через один период начисления эта сумма станет равна:

FV1= PV + PV * r = PV * (1 + r),

через два периода она станет равна:

FV2= FV1+ FV1* r = FV1* (1+ r) = PV (1 + r)2,

FVn= FVn−1 + FVn−1* r = FVn−1* (1+ r) = PV (1 + r)n.

Рисунок 6.7 – Будущая стоимость денежной единицы

Пример. $1000 вложено в банк под 10 % годовых. Какая сумма накопится на счете через 5 лет? 10% переводим в относительные единицы, для этого делим их на 100% и получаем 10% / 100% =0,1.

FV5= 1000 (1+ 0,1)5= 1610,5.

Правило 72-х. Иногда при расчетах приходится сталкиваться с задачей определения количества периодов начисления, по истечении которых первоначально депонированная сумма увеличивается вдвое. Очень просто решить эту задачу позволяет известное «Правило 72-х», согласно которому – количество периодов, необходимое для удвоения первоначальной суммы вычисляется по формуле:

n = 72 / r .

Данное правило позволяет получить точные результаты при значениях r: 3% < r < 18%. Срабатывает правило и в обратном порядке для определения ставки дохода, при которой депонированная сумма удвоится.

Например, при ставке 6% годовых сумма удвоится за 72 / 6 = 12 лет.

Более частое, чем один раз в год, начисление процентов. Приведенные выше расчеты основывались на том предположении, что начисление процентов происходит один раз в год. Однако аккумулирование может происходить не только раз в год, но и чаще, например раз в квартал, раз в месяц и т. д. В этом случае необходимо ставку процента разделить на частоту накопления в течение года (m), а число лет накопления (n) умножить на частоту накопления в течение года (m). Формула расчета будет выглядеть следующим образом:

FV = PV (1 + r/m)n*m,

где m – частота начисления процентов в год;

n – число лет, в течение которых происходит накопление.

Чем чаще начисляются проценты, тем больше накопленная сумма. Приведенное преобразование справедливо в отношении всех шести функций.

6.2.1.2. Будущая стоимость аннуитета (накопление единицы за период)

Данная функция показывает, какой будет стоимость серии равных

платежей величиной (А) по истечении установленного срока их наращения (n) (рисунок 6.8).

Рисунок 6.8 – Будущая стоимость аннуитета постнумерандо

Из рисунка 6.8 видно, что будущая стоимость исходного денежного потока (аннуитета) постнумерандо (FVАpst) может быть оценена как сумма наращенных поступлений.

Очевидно, что будущая стоимость последнего платежа совпадает с величиной самого платежа, т.к. отсутствует период наращения:

Будущая стоимость предпоследнего платежа будет наращена за один период и составит:

Аналогично наращиваются все платежи. Будущая стоимость первого платежа будет наращена за (n-1) периодов и составит:

FVn-1= А·(1+r) n-1.

Их общую сумму можно выразить как:

FVАpst = А·(1+r)n-1+ А·(1+r)n-2+ ...+ А·(1+r) + А

Вынесем (А) за знак скобки и обозначим (1+r) через (q). Получим выражение:

FVА = А·(qn-1+ qn-2+ ...+ q + 1).

Теперь отчетливо видно, что многочлен, содержащийся в скобках, называемый мультиплицирующий множитель и обозначаемый (FМ3(r, n)), представляет собой сумму членов геометрической прогрессии (S), но записанной в обратном порядке:

S = 1 + q + q2… + qn-2+ qn-1

Умножим обе части этого уравнения на (q) и получим:

S·q = q + q2… + qn-1+ qn

Вычтя из полученного уравнения предыдущее, получим:

S·q – S = qn–1.

S = (qn– 1) / (q – 1)

Теперь, подставив вместо (q) его значение (1+r), получаем формулу расчета мультиплицирующего множителя:

FМ3(r, n) = S = ((1+r)n– 1)/r

Следовательно, выражение для будущей стоимости обычного аннуитета величиной (А) за (n)периодов будет иметь вид:

FVАpst = А·FМ3(r, n) = А·((1+r)n– 1)/r).

Данный мультипликатор еще называют - процентный множитель будущей стоимости аннуитета FVIFA(r, n) – Future Value Interest Factor of Annuity. Экономический смысл мультиплицирующего множителя заключается в том, что он показывает, чему будет равна суммарная величина срочного (на определенный срок) накопленного аннуитета величиной в одну денежную единицу к концу срока его действия.

Поскольку значения множителя (FМ3(r, n)) зависит лишь от (r) и (n), то они рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах.

Пример. Если вкладывать ежегодно $900 на счет в банке под 10% годовых, сколько накопится на нем через 5 лет?

FVА5= 900·((1+0,1)5− 1) / 0,1) = 5494,59

Теперь рассмотрим случая авансового аннуитета (рисунок 6.9).

Как и в случае обычного, рассмотрим накопленные суммы в конце первого, второго... n -го периода:

FV1= А·(1+r) ,

FV2= А·(1+r)2,

…………………………………………….……….

FVn= А· (1+r)n

FVАpre = А·(1+r)n+А·(1+ r)n −1+...+ А·(1+r)2+ А·(1+r).

Рисунок 6.9 – Будущая стоимость авансового аннуитета (пренумерандо)

Сравнив формулы расчета FVАpst и FVАpre, легко убедиться, что

FVАpre = FVАpst (1+ r).

Произведя соответствующее умножение, получим:

FVАpre = FVАpst·(1+ r) = А· ((1+r)n– 1)/r) (1+ r) =

А· ((1+r)n+1– 1 – r)/r) = А· ((1+r)n+1– 1)/r) – 1).

Периодические депозиты могут вноситься чаще, чем один раз в год, соответственно чаще накапливается процент. При этом количество начислений увеличится в m раз и составит (n·m), а ставка уменьшится в m раз и составит (n/m). Тогда ранее полученная формула примет вид:

FVАn= А·(((1+r/m)(n+1)m– 1)/r/m) – 1).

Чем чаще делаются взносы, тем больше накопленная сумма.

Пример. Если вкладывать ежемесячно $75 на счет в банке под 10 % годовых, сколько накопится на нем через 5 лет?

FVА5= 75 (((1+0,1/12) 5·12– 1) / 0,1/12 = 5807,78.

Фактор фонда возмещения

Данная функция позволяет рассчитать величину периодического платежа (А или SFF, как его в таком случае называют), необходимого для накопления нужной суммы (FVА) по истечении (n)платежных периодов при заданной ставке процента (r) (рисунок 6.10).

Рисунок 6.10 – Периодический взнос в фонд накопления

Из формулы будущей стоимости аннуитета (FVА = А·FМ3(r, n)) следует, что величина каждого платежа (SFF или А) в случае обычного аннуитета вычисляется следующим образом:

SFFpst = Аpst = FVА / FМ3(r, n) = FVА·r/((1 + r)n− 1) = FVА·FМ5(r, n) .

где FМ5(r, n) = r/((1 + r)n− 1) – мультиплицирующий множитель, значения которого рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах.

Экономический смысл множителя FМ5(r, n) состоит в том, что он показывает величину периодических платежей необходимых для накопления одной денежной единицы через (n) периодов.

Пример. Необходимо за 4 года скопить $1000 при ставке банка 10%. Сколько придется вкладывать каждый год?

SFF = 1000 (0,1 / ((1 + 0,1)4− 1) = 215,47.

В случае авансового фонда возмещения (соответствующего авансовому аннуитету) формула единичного платежа (SFFpre) имеет вид:

SFFpre = FVА·r/((1 + r)(n+1)− 1− r).

Функции дисконтирования

17.03.2015 11:00 8030

Стандартные функции сложного процента

Применение стандартных функций сложного процента даёт возможность рассчитать величину любого из элементов, характеризующих распределенные во времени денежные потоки - стоимость, платеж, время, ставку, - при условии, что другие элементы известны.

Как правило, речь идет о 6 функциях сложного процента:

  • накопленная сумма единицы(её будущая стоимость),
  • накопление единицы за период,
  • взнос в формирование фонда возмещения,
  • реверсия (текущая стоимость единицы),
  • текущая стоимость обычного аннуитета,
  • взнос на амортизацию единицы

Поскольку эти функции применяют весьма широко и часто, разработаны стандартные таблицы, которые включают заранее рассчитанные факторы сложного процента. В данном контексте фактором называется одно из двух или более чисел, которые, будучи перемноженными, дают заданный результат. Все эти факторы созданы с применением базовой формулы (1 + i)n, дающей описание накопленной суммы единицы, и по сути, представляют собой производные от этого фактора.

Будущая стоимость единицы.

Будущая стоимость единицы – функция, которая определяет ее накопленную сумму спустя n периодов, если ставка дохода на капитал равна i. Функция подразумевает, что доход на капитал, полученный за период, вместе с первоначальным капиталом формирует базу, с которой будет определяться доход на капитал в следующий период.

Её рассчитывают по формуле:

где FV - будущая стоимость;
PV - текущая стоимость;
i - ставка дохода;

FVF(i;n) = (1 + i)n - фактор будущей стоимости единицы (накопленной суммы).

С помощью этой функции можно вычислить будущее значение денежной суммы, опираясь на ее текущее значение, размер ставки дохода на капитал и длительность срок накопления.

В текущий момент стоимость земельного участка составляет 1000 долл., при уровне доходности 14%. Предполагается, что он будет продан через два года. При этом ни его характеристики, ни рыночные условия не изменятся. В данном случае будущая стоимость земельного участка станет равной 1300 долл.:

или, что одно и то же

Накопление единицы за период.

Накопление за период – функция, которая определяет будущую стоимость обычного аннуитета (то есть серии равновеликих периодических платежей и поступлений PMT) на протяжении n периодов при размере ставки дохода на капитал i.
Обычный аннуитет – это серия равновеликих периодических платежей и поступлений, причём первый из них производится в конце следующего, после текущего, периода. Если платежи производятся авансом, (в начале каждого периода), речь идёт об авансовом аннуитете.

Будущую стоимость обычного аннуитета рассчитывают по формуле:

где FVA - будущая стоимость обычного аннуитета
PMT – величина одного из серии равновеликих периодических платежей или поступлений
i - ставка дохода;
n - число периодов;

Фактор будущей стоимости обычного аннуитета.

Нужно рассчитать будущую стоимость земельного участка, приобретенного при условии отсрочки платежа на полгода и компенсации 12% годовых. Платежи вносятся в конце каждого месяца - равными суммами по 1000 долл. В таком случае будущая стоимость земельного участка окажется равной 6152 долл.:

или, что то же самое

Взнос на формирование фонда возмещения.

Взносы на формирование фонда возмещения - функция, которой определяется величина платежей для обычного аннуитета, чья будущая стоимость через n периодов, при величине ставки i, равна 1.

Иначе говоря, с помощью функции взноса на формирование фонда возмещения можно определить размер равновеликого периодического платежа (регулярного дохода), нужного для накопления до конца установленного периода определенной суммы, с учетом накопленных процентов, при некоторой ставке дохода.

Расчет величины равновеликого периодического платежа осуществляется по формуле:

где PMT – величина равновеликого периодического платежа;
FV - будущая стоимость обычного аннуитета
i - ставка дохода;
n - число периодов;

Фактор фонда возмещения
SFF (i;n) (фактор фонда возмещения) является обратной величиной фактора будущей стоимости обычного аннуитета:

Нужно рассчитать величину ежегодных накоплений с целью равноценной замены существующего здания, которое приносит доход в 14%, с условием, что к окончанию периода экономической жизни (8 лет) затраты на замену здания составят 10000 долл. В данном случае величина ежегодных отчислений составит 755,70 долл.:

Текущая стоимость единицы (реверсии).

Текущая стоимость единицы (реверсии) – функция, которая определяет текущую стоимость будущей единицы, которую можно получить по истечении n периодов при заданной ставке дохода i. Данная функция позволяет осуществить оценку текущей стоимости дохода, который может быть получен от реализации объекта в конце периода при данной ставке дисконта.

Текущую стоимость единицы рассчитывают по формуле:

где PV - текущая стоимость;
FV - будущая стоимость;
i - ставка дохода (дисконта);
n - срок накопления (число периодов);

Фактор текущей стоимости единицы (реверсии).

В математическом смысле текущая стоимость единицы – это обратная величина функции ее будущей стоимости.

Требуется вычислить текущую стоимость земельного участка, который в конце года будет продан по цене 1000 долл. При ставке дисконта 10% в год текущая стоимость участка будет равной 909,09 долл.

Текущая стоимость обычного аннуитета.

Текущая стоимость обычного аннуитета – функция, которая определяет текущую стоимость серии будущих равновеликих периодических платежей (поступлений) PMT на протяжении n периодов при ставке дисконта i. Вычисление осуществляют по формуле:

где PVA - текущая стоимость обычного аннуитета
PMT - величина одного из серии равновеликих периодических платежей (поступлений)
i - ставка дохода (дисконта);
n - число периодов

Фактор текущей стоимости обычного аннуитета.

Текущая стоимость обычного аннуитета может быть определена как сумма текущих стоимостей всех платежей:

Нужно определить текущую стоимость платежей по аренде, при условии, что земельный участок был сдан на три года, за ежегодную арендную плату 100 долл. Ставка дисконта равна 12%. Тогда текущая стоимость платежей составит 240,18 долл.:

Взнос на амортизацию единицы.

Взнос на амортизацию единицы – функция, при помощи которой определяют величину регулярного платежа (поступления), обеспечивающего доход на капитал и его возврат при ставке дисконта i за n периодов. Взнос на амортизацию единицы можно рассчитать по формуле:

где PMT - величина платежа для обычного аннуитета;
PV - текущая стоимость единицы,
i - ставка дисконта (дохода);
n - срок накопления (число периодов);

Фактор взноса на амортизацию единицы.

Эта функция, равно как и функция взноса на формирование фонда возмещения, даёт возможность определения платежа РМТ. Но в отличие от функции взноса на формирование фонда возмещения, связанной с платежом с целью накопления заданной суммы FV, функция взноса на амортизацию единицы имеет отношение к платежу, позволяющему вернуть заданную на текущий момент сумму PV. При этом платеж включает две составляющие: первая обеспечивает доход по заданной ставке i, вторая обеспечивает возврат капитала по норме возврата SFF(i; n) за n периодов.

Функция взноса на амортизацию единицы используется при определении регулярных равновеликих (аннуитетных) платежей в счет погашения кредита, если он выдан на некоторый период по заданной ставке по кредиту. При этом каждый платеж включает в себя и выплаты основной суммы долга, и начисленных процентов. Сами платежи при этом равновеликие, и от платежа к платежу соотношение доходной и возвратной составляющих меняется (уменьшается часть, с которой идёт выплата процентов, и увеличивается та часть, которая идёт на возврат принципала, то есть основной суммы кредита. То есть процент начисляется на невыплаченную сумму принципала и процентная ставка по кредиту, по мере его погашения, начисляется на меньшую сумму. Функция взноса на амортизацию единицы при этом обратна функции текущей стоимости обычного аннуитета.

Нужно рассчитать величину ежегодного дохода, который приходится на здание, которое будет эксплуатироваться в течение 5 лет, если его текущая стоимость равна 10000 долл., а ставка дисконта - 15%. При таких условиях размер ежегодного дохода составляет 2983,16 долл.:

или, что одно и то же

Используя взаимосвязь факторов шести функций сложного процента, можно предложить представить логику их построения и экономический смысл в табличной форме.

Взаимосвязь и экономический смысл стандартных функций сложного процента

Резюме

В оценке недвижимости важную роль играет теория стоимости денег во времени. С ее помощью объясняется такой значимый для оценки процесс, как дисконтирование, отражающий взаимосвязь между понятиями текущая стоимость, будущая стоимость, регулярный доход, время, ставка дохода.

Данная взаимосвязь реализуется на основе использования 6 функций сложного процента, позволяющих определить искомую величину на основе умножения известной величины на соответствующий фактор, значение которого может быть вычислено или взято из таблиц 6 функций сложного процента. Это существенно облегчает выполняемые при оценке многочисленные расчеты.

Теория стоимости денег во времени

По теории стоимости денег во времени одна денежная единица сегодня стоит дороже, чем полученная в будущем.

Весь период до появления будущих доходов денежная единица приносит прибыль или новую стоимость. Сумма денег приписываемая к определенному моменту времени называется денежными потоками. Основной операцией позволяющей сопоставить разновременные деньги являются операции накопления и дисконтирования.

Накопление – это процесс определения будущей стоимости.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

На этих двух операциях строится весь финансовый анализ, так как денежная единица рассматривается как капитал.

Задачи накопления наиболее наглядно показаны примерами из области кредитных отношений, при этом используется формула начисления сложного процента.

Одним из основных критериев является процентная ставка (i ) – это отношение чистого дохода к вложенному капиталу. В случае операции накопления – эта ставка называется ставкой дохода на капитал. При дисконтировании называется ставкой дисконта или ставкой дисконтирования.

Суммы денег, получаемые (отдаваемые) регулярно (ежемесячно, ежеквартально, ежегодно) называются аннуитетом - они бывают простые и авансовые, в зависимости от того, в конце или в начале периода они выплачиваются.

Риск – это неопределенность, связанная с инвестициями, т. е. вероятность того, что прогнозируемые доходы от инвестиций окажутся больше или меньше предполагаемых величин.

Финансовые расчеты могут основываться на простом и сложном проценте.

Простой процент – приращение дохода на вложенную сумму денег по единой процентной ставке в течение всего срока.

Сложный процент – приращение дохода на вложенную сумму денег по сумме остатка предыдущего периода времени в течение срока инвестиций или кредита.

Расчет простого процента:

Расчет сложного процента:

FV = PV × (1+ i ) n (2)

PV – текущая стоимость, руб (у.е.);

FV – будущая стоимость, руб (у.е.);

n – период (срок) вклада, лет (мес.).

Таблица 1 - Получение простого и сложного процента

Операции

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Разница в расчетах по простому и сложному проценту заключается в том, что при простом проценте ставка начисляется каждый раз на первоначально – вложенный капитал, при сложном проценте каждое последующие начисление ставки осуществляется в предшествующий период суммы, т. е. идет начисления процента на процент.

Правило 72-х :

Применяется для примерного расчета количества лет, необходимых для увеличения денежной суммы в 2 раза:

n =72 / i (3)

Выделяют шесть функций сложного процента:

    Накопленная сумма денежной единицы

    Текущая стоимость единицы (реверсии)

    Накопление денежной единицы за период

    Фонд возмещения

    Взнос на амортизацию единицы

    Текущая стоимость аннуитета (платежа)

Теперь рассмотрим каждую функцию по отдельности.

      Накопленная сумма денежной единицы

Экономический смысл – показывает, какая сумма будет накоплена на счете к концу определенного периода при заданной ставке дохода, если сегодня положить на счет одну денежную единицу.

При начислении процентов 1 раз в год:

FV = PV × (1+ i ) n (4)

При начислении процентов чаще, чем 1 раз в год:

FV = PV × (1+ i / k ) n × k (5)

i – ставка дисконта, %

n – период (срок) вклада, лет (месяц)

k – число начислений процентов в год

(1+ i ) n – фактор накопленной суммы единицы при ежегодном начислении процентов

(1+i/k) n * k – фактор накопленной суммы денежной единицы при начислении процентов чаще, чем раз в 1 год.

Задача 1: Определить какая сумма будет накоплена на счете к концу 28,5 года, если сегодня положить на счет, приносящий 26 % годовых, 4450 руб. Начисление процентов осуществляется в конце каждого полугодия.

FV = 4 450×(1+0,26/2) 28,5×2 = 4 718 796,94 руб.

      Текущая стоимость единицы

Экономический смысл – показывает, какова при заданной ставке дисконта текущая стоимость одной денежной единицы, получаемой в конце определенного периода времени.

Определяется по формулам:

(6)

(7)

1/(1+ i ) n – фактор текущей стоимости единицы при ежегодном начислении процентов;

1/(1+ i / k ) n × k – фактор текущей стоимости единицы при более частом, чем 1 раз в год начислении процентов.

Задача 2: Определить текущую стоимость 3100 руб., которые будут получены в конце 9-го года при ставке дисконта 9%. Начисление процентов каждый день.

PV= 3 100×1/(1+0,09/365) 9×365 = 1 379,20 руб

      Накопление денежной единицы за период

Экономический смысл – показывает, какая сумма будет накоплена на счете при заданной ставке, если регулярно в течение определенного срока откладывать на счет одну денежную единицу.

Будущая стоимость обычного аннуитета:

(8)

(9)

Будущая стоимость авансового аннуитета:

(10)

(11)

PMT – равновеликие периодические платежи, руб;

((1+ i ) n - 1) / i – фактор накопления денежной единицы за период

Задача 3: Определить сумму, которая будет накоплена на счете, приносящем 34 % годовых к концу 49 месяца, если ежемесячно откладывать на счет 6300 руб. платежи осуществляются: а) в начале месяца; б) в конце месяца.

а)

б)

      Формирование фонда возмещения

Экономический смысл – показывает, сколько нужно откладывать на счет регулярно в течение определенного времени, чтобы при заданной ставке дохода иметь на счете к концу этого срока одну денежную единицу.

Определяется по формулам:

(12)

(13)

i / (1+ i ) n -1 – фактор фонда возмещения.

Задача 4: Определить, какими должны быть платежи, чтобы к концу 9-го года иметь на счете, приносящем 8% годовых, 78 000 руб. платежи осуществляются: а) в конце каждого полугодия; б) в конце каждого квартала.

а)

б)

      Взнос на амортизацию

Экономический смысл – показывает, какими должны быть аннуитетные платежи в счет погашения кредита в одну денежную единицу, выданного при заданной процентной ставке на определенный срок.

Определяется по формулам:

(14)

(15)

–фактор взноса на амортизацию;

Задача 5: Кредит в размере 345 000 рублей выдан на 29 лет под 18% годовых. Определить размер аннуитетных платежей. Погашение кредита осуществляется в конце каждого месяца.

      Текущая стоимость аннуитета

Экономический смысл – показывает, какова при заданной ставке дисконта текущая стоимость серии платежей в одну денежную единицу, поступающих в течение определенного срока.

Определяется по формулам:

1. Обычный аннуитет:

(16)

(17)

2. Авансовый аннуитет:

(18)

(19)

PV - настоящий платеж, руб;

PMT - регулярный периодический платеж, руб;

i – ставка дисконта, %;

k - количество начислений в год (период);

n – период (срок) вклада, лет (месяц);

–фактор текущей стоимости обычного аннуитета;

–фактор текущей стоимости авансового аннуитета

Задача 6: Договор аренды квартиры составлен на 24 месяца. Определить текущую стоимость арендных платежей при 8% ставке дисконтирования. Арендная плата 2550 руб / мес. При условиях:

а) Арендная плата выплачивается в начале квартала;

б) Арендная плата выплачивается в конце каждого квартала.

Решение:

а)

б)


В процессе проведения оценки любого объекта недвижимости оценщику приходится постоянно учитывать денежные потоки, относимые к разным промежуткам времени. Это может быть поток, генерируемый год от года оцениваемым объектом при использовании метода дисконтированных денежных потоков, или стоимость объекта-аналога, проданного некоторое время назад, или затраты на строительство, данные в ценах предыдущих лет.
Сравнивать эти потоки, а также производить с ними арифметические действия без предварительной подготовки некорректно, так как покупательная способность одной и той же денежной суммы в различные временные периоды разная.
Различная стоимость денежной единицы обусловливается следующими причинами: влиянием инфляции, снижающей покупательную способность денежных средств; колебаниями на рынках товаров и услуг (на различных сегментах рынка недвижимости); потерей части дохода из-за получения денежных средств не сейчас, а через определенный промежуток времени, которая могла быть получена за этот промежуток при инвестировании этой суммы.
Таким образом, для сравнения или произведения арифметических действий все разновременные денежные потоки необхо

димо приводить к одному и тому же моменту времени. К какому именно моменту времени, теоретически совершенно неважно, но так как все расчеты и отчет об оценке недвижимости составляются на определенную дату, то, как правило, все потоки приводятся именно к дате оценки.
Для данного приведения используется алгоритм, в финансовой математике носящий название шесть функций сложного процента или функций денежной единицы.
Как известно, проценты бывают простые и сложные. При простом исчислении по окончании каждого соответствующего периода процент начисляется исключительно на изначальную сумму. При сложном исчислении процент за каждый последующий период начисляется на основную сумму и на процентные выплаты за предыдущие периоды.
Функции сложного процента подразделяются на: будущую стоимость денежной единицы; будущую стоимость аннуитета; фактор фонда возмещения; текущую стоимость денежной единицы; взнос на амортизацию денежной единицы; текущую стоимость аннуитета.
Три первые функции применяются для пересчета текущих денежных сумм в будущие, а три последние - для пересчета будущих денежных единиц в текущие. Первый процесс называется компаундированием, а второй дисконтированием. Но на практике термин «компаундирование» не прижился и не используется, термин же «дисконтирование» применяется достаточно широко.
Рассмотрим случай, когда некоторая денежная сумма (обозначим ее PV) помещается на депозитный банковский счет под ежегодный процент / на п лет. Через год на счете окажется следующая сумма:

На второй год банковский процент будет начисляться уже не только на сумму PV, но и на проценты за первый год, что можно записать следующим образом:

На третий год ситуация будет аналогичной с той лишь разницей, что процентная составляющая увеличится:

Таким образом, в общем виде на какой угодно период накопленную сумму можно рассчитать по формуле
(1)
где PV - текущая стоимость денежной единицы;
FV - будущая стоимость денежной единицы;
/ - процентная ставка;
п - количество временных периодов.
Необходимо обратить внимание, что показатели количества периодов и процентная ставка должны быть сопоставимыми. Так, если проценты начисляются ежегодно, то п должно обозначать число лет, а / - годовую ставку, если же известно, что проценты начисляются ежемесячно, тогда формула (1) примет вид:
(2)
Приведенная формула называется функцией будущая стоимость денежной единицы и используется для пересчета денежных потоков, отнесенных к настоящему, в их будущую стоимость.
Пример 1. В настоящий момент Андрей Иванов имеет 50 000 руб. свободных средств для осуществления личных инвестиций на срок 5 лет. В процессе анализа возможных объектов вложений он обратил внимание на инвестиционный фонд А, обещающий своим вкладчикам 15 % годовых с ежеквартальным начислением дохода на счета клиентов.
В процессе расчета возможной итоговой выгоды от сотрудничества с фондом Андрей применил функцию «будущая стоимость единицы»:

Следовательно, если фонд А выполнит все свои обязательства, то через пять лет сбережения Иванова увеличатся более чем в 2 раза и составят 104 тыс. руб.

Из приведенной формулы (1) не составляет труда вывести выражение, позволяющее найти текущую стоимость денежных потоков, отнесенных к будущим временным периодам:
(3)
Эта функция носит название текущей стоимости денежной единицы.
Пример 2. Молодая семья хочет скопить за десять лет 500 тыс. руб. на образование своего ребенка. Одним из вариантов является помещение имеющихся 80 тыс. руб. на банковский депозит под 11 % годовых с ежеквартальным начислением процентов.

Для оценки своих возможностей супруги применили текущую стоимость денежной единицы:

Остальные четыре функции связаны с понятием аннуитетного платежа или аннуитета. Аннуитетом принято называть равные денежные выплаты через равные промежутки времени. Самым простым и наиболее распространенным примером аннуитетных выплат является арендная плата, поступающая на счет владельца недвижимости каждый месяц (квартал, год) от арендатора.

Если владелец недвижимого имущества захочет узнать, какая сумма накопится у него на счете за срок арендного договора, то для расчетов ему будет необходимо воспользоваться функцией будущая стоимость аннуитета или накопление единицы за период:

где РМТ - величина единичного аннуитетного платежа.

сможет скопить, Петр решил посчитать будущую стоимость трехлетнего аннуитета:

По окончании требуемого срока он будет иметь в своем распоряжении 243 тыс. 750 руб. для ремонта.
Обратная к будущей стоимости аннуитета функция носит название фактор фонда возмещения. Она применяется в случаях, если необходимо вычислить величину аннуитетного платежа, необходимого для накопления заранее известной суммы через определенный временной промежуток:

Пример 4. Убедившись в невозможности скопить средства на образование, семейная пара из примера 2 решила получить требуемую сумму на банковском счете, внося на него раз в квартал некоторую сумму.
Для этого необходимо рассчитать минимальную величину ежеквартального платежа:

Следовательно, для того чтобы за 10 лет скопить требуемую сумму, супруги должны ежеквартально вносить на счет чуть более 7 тыс. руб.
В области оценки недвижимости часто приходится иметь дело с заемными средствами, кредитами на покупку или строительство объектов. Погашение полученного кредита в финансовой математике принято называть его амортизацией, именно поэтому функцию, применяемую для расчетов аннуитетных погашающих выплат при кредитовании, называют взнос на амортизацию единицы:

где PV - сумма кредита.

Пример 5. Владелец небольшого бизнеса Иван Конев с ежемесячным доходом 40 тыс. руб. планирует взять кредит на покупку квартиры стоимостью 1,5 млн руб. Средние банковские условия состоят в сумме, не превышающей 70 % от стоимости объекта на 15 лет под 15 % годовых с ежемесячными равными выплатами в течение всего срока.


Иван решил рассчитать, какую же сумму ему придется платить каждый месяц. Для начала он нашел максимально возможную сумму кредита:

1 050 000-0,014 = 14 700 руб.
Следовательно, Коневу для погашения кредита необходимо выплачивать 14 700 руб. в месяц.

Функция текущая стоимость аннуитета применяется при известных аннуитетных платежах, если необходимо определить, сколько сумма всех этих выплат представляет в текущем выражении. Данная функция является обратной к взносу на амортизацию единицы, поэтому принимает следующий вид:

Пример 6. Иван Конев из предыдущего примера недоволен проведенными расчетами, он хочет тратить на погашение кредита не более четверти своего ежемесячного дохода, правда, возникает вопрос, какова же тогда окажется сумма кредита?
Для начала рассчитаем желаемые аннуитетные платежи:

РМТ = 40 000 25 % = 10 000 руб.

Таким образом, при желаемом уровне выплат Иван может рассчитывать лишь на кредит, составляющий 47 % от стоимости квартиры:
(714 490: 1 500 000 = 0,47).
Все представленные функции сложного процента в совокупности представляют собой формализованное представление теории стоимости денег во времени. В теории и практике оценки недвижимости часты случаи применения данных функций. Практически ни один из методов оценки не обходится без применения указанных функций.
В практической деятельности, кроме проведения расчетов, аналогичных приведенным выше примерам, широко используют готовые таблицы функций сложного процента (приложение В).
Например, если Петр Сидоров (пример 3) мог рассчитать сумму, которая он сумеет скопить за искомый период следующим образом: определить сумму ежегодного аннуитета (75 000 руб.); найти фактор будущей стоимости аннуитета. Для этого открыть в приложении В таблицу шести функций сложного процента для ставки, равной 8 %, и на пересечении строки с номером года, равном 3, и столбца с названием «Будущая стоимость аннуитета» найти нужную величину. В приводимом примере она будет равна 3,2464; перемножить величины аннуитетной выплаты и фактора будущей стоимости аннуитета.
Проделав описанные операции, получим тот же результат, что и в примере 3. Аналогичным образом можно применять таблицы шести функций сложного процента для расчетов с применением данных функций.
Вопросы и задания для самоконтроля Опишите основные положения теории стоимости денег во времени. В чем причина частого использования функций сложного процента в процессе оценки недвижимости? Владелец гостиницы планирует сделать ремонт через 5 лет. В настоящее время стоимость ремонта составляет 100 тыс. и дорожает на 4 % в год. Какую сумму ежемесячно должен класть владелец в банк под 10 % годовых, чтобы в итоге скопить требуемую сумму? За какой срок денежная сумма, положенная в банк под 8 % годовых, удвоится? Семья планирует взять кредит и выплачивать за него не более 3500 руб. ежемесячно. Средние банковские условия таковы: срок кредита 8 лет под 12 % годовых. Сумеет ли семья с помощью кредита профинансировать на 70 % покупку квартиры стоимостью 1 млн руб.? Господин Петров за 50 млн руб. приобрел склад, сданный в аренду на 10 ближайших лет с ежеквартальной выплатой арендной платы. Среднерыночное изменение цен на рынке складской недвижимости составляет 10 %. Хватит ли Петрову получаемого дохода для выплаты ипотечного кредита, выданного на 8 лет под 12 % годовых? Выплаты по кредиту осуществляются ежемесячно. Какую сумму нужно вложить в банк сейчас под 8 % годовых, чтобы получить через 10 лет 21 млн руб.? Семья планирует за 7 лет скопить на обучение ребенка, которое сейчас стоит 450 000 руб. и дорожает на 8 % в год. При этом за оставшийся срок семья планирует 35 % от требуемой суммы скопить, ежеквартально кладя деньги в банк под 11 % годовых, а на оставшуюся часть взять кредит на следующие 5 лет под 14 % годовых. Сколько семья должна класть на счет в первые годы и ежемесячно выплачивать банку в последующие?

Анализ движения денежных средств должен осуществляться как в краткосрочном, так и в долгосрочном плане. В основе долгосрочного анализа денежных потоков лежит понимание временного предпочтения в распоряжении денежными средствами, или, по-другому, концепция стоимости денег во времени.

Данная концепция состоит в том, что денежные средства имеют стоимость, которая определяется временным фактором, т. е. ресурсы, имеющиеся в распоряжении сегодня, стоят больше, чем те же ресурсы, получаемые через некоторый (существенный) промежуток времени.

Концепция стоимости денежных средств затрагивает широкий круг деловых решений, связанных с инвестированием. Понимание данной концепции во многом определяет эффективность принимаемых решений.

Временное предпочтение в распоряжении денежными средствами определяется следующим. Текущее распоряжение ресурсами позволяет предпринимать действия, которые с течением времени приведут к росту будущего дохода. Исходя из этого, стоимость денежных средств характеризуется возможностью получить дополнительный доход. Чем больше возможная величина дохода, тем выше стоимость денежных средств. Таким образом, стоимость денежных средств определяется упущенной возможностью получить доход в случае наилучшего варианта их размещения.

Данное положение имеет большое значение, поскольку стоимость денежных средств часто ошибочно сводят к потерям от инфляции. Действительно, под влиянием инфляционного фактора покупательная способность денежных средств снижается. Но принципиальным становится понимание того, что даже при полном отсутствии инфляции денежные средства обладают стоимостью, определяемой отмеченным ранее временным предпочтением и возможностью получения дополнительного дохода от более раннего вложения средств.

Стоимость денежных средств или стоимость упущенных возможностей не является абстракцией, хотя она и не фиксируется в бухгалтерском учете. Количественным выражением временного предпочтения в использовании денежных средств обычно выступают процентные ставки, отражающие норму временного предпочтения в данной экономической ситуации.

Но если ставка процента отражает большую ценность ресурсов, имеющихся в распоряжении сейчас, то из этого следует, что для определения приведенной к сегодняшнему моменту стоимости денежных средств, которые предполагается получить в будущем, необходимо дисконтировать эти суммы в соответствии со ставкой процента.

Отметим, что принятая Концепция бухгалтерского учета в рыночной экономике России впервые ввела в российскую учетную практику понятие дисконтированной стоимости. Согласно Концепции дисконтированная стоимость может использоваться для оценки, как активов, так и обязательств. Оценка активов по дисконтированной стоимости позволяет увидеть связь между расходами, связанными с созданием (формированием) активов, и доходами, возникающими в будущем от их использования.

Оценка обязательств по дисконтированной стоимости представляет собой приведенные (пересчитанные) к текущему моменту связанные с ними будущие платежи.

Таким образом, могут быть даны определения основных понятий долгосрочного финансового анализа.

Дисконтированная (приведенная) стоимость - приведенная к сегодняшнему дню стоимость платежа или потока платежей, которые будут произведены в будущем.

Будущая стоимость - стоимость, которую предполагается получить в результате инвестирования денежных средств при определенных условиях (процентной ставке, временном периоде, условиях начисления процентов и др.) в будущем.

Проценты и дисконтирование - основные приемы долгосрочного анализа. В основе их использования лежит понимание того, что с экономической точки зрения бессмысленно напрямую (без приведения к одному временному периоду) сопоставлять денежные суммы, получаемые в разное время. При этом не имеет значения, к какому моменту времени будут приводиться денежные суммы - настоящему или будущему. Однако, поскольку необходимость сопоставления денежных потоков возникает с целью принятия конкретного управленческого решения, например об инвестировании денежных средств с целью получения дохода в будущем, денежные потоки, как правило, приводятся к моменту принятия решения (его принято называть моментом времени 0).

Приведение будущей стоимости денежных средств к настоящему времени (моменту 0) принято называть дисконтированием. Экономический смысл процесса дисконтирования денежных потоков состоит в нахождении суммы, эквивалентной будущей стоимости денежных средств. Эквивалентность будущих и дисконтированных денежных сумм означает, что инвестору должно быть безразлично, иметь некоторую сумму денежных средств сегодня или через определенный период времени располагать той же суммой, но увеличенной на величину начисленных за период процентов. Именно в этом случае временного безразличия можно говорить о том, что найдена дисконтированная стоимость будущих потоков.

Как видим, принципиальными при этом являются следующие вопросы: собственно величина будущих денежных сумм; сроки их получения; процентная или дисконтная ставка (процентная ставка используется для определения будущей стоимости денежных сумм, дисконтная ставка - для нахождения приведенной стоимости будущих сумм); фактор риска, связанный с получением будущих сумм.

При определении процентной (дисконтной) ставки необходимо принять во внимание эффект сложных процентов. Сложный процент предполагает, что начисленный за период процент не изымается, а добавляется к первоначальной сумме. В следующем периоде он приносит новый доход.

Таким образом, идя того чтобы выяснить целесообразность осуществления инвестиций, необходимо оценить, действительно ли текущая стоимость денежных сумм, которые будут получены в будущем, превышает текущую стоимость тех денежных сумм, которые необходимо инвестировать для получения этих доходов. Наличие превышения первых сумм над вторыми является критерием того, насколько желательны инвестиции.

Всего рассматривают шесть функций денежной единицы, основанных на сложном проценте. Для упрощения расчетов разработаны таблицы шести функций для известных ставок дохода и периода накопления (I и n), кроме того, можно воспользоваться финансовым калькуля тором для расчета искомой величины.

1 функция: Будущая стоимость денежной единицы (накопленная сумма денежной единицы), (fvf , i , n).

Если начисления осуществляются чаще, чем один раз в год, то формула преобразуется в следующую:

k – частота накоплений в год.

Данная функция используется в том случае, когда известна текущая стоимость денег и необходимо определить будущую стоимость де нежной единицы при известной ставке доходов на конец определенного периода (n).

2 функция : Текущая стоимость единицы (текущая стоимость реверсии (перепродажи)), (pvf , i , n).

Текущая стоимость единицы является обратной относительно бу дущей стоимости.

Если начисление процентов осуществляется чаще, чем один раз в год, то

Примером задачи может служить следующая: Сколько нужно вложить сегодня, чтобы к концу 5го года получить на счете 8000, если годовая ставка дохода 10%.

3 функция : Текущая стоимость аннуитета (pvaf , i , n).

Аннуитет – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени.

Выделяют обычный и авансовый аннуитеты. Если платежи осуще ствляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.

Формула текущей стоимости обычного аннуитета:

PMT – равновеликие периодические платежи. Если частота начислений превышает 1 раз в год, то

Формула текущей стоимости авансового аннуитета:

4 функция : Накопление денежной единицы за период (fvfa , i , n).

В результате использования данной функции определяется буду щая стоимость серии равновеликих периодических платежей (поступле ний).

Платежи также могут осуществляться в начале и в конце периода.

Формула обычного аннуитета:

5 функция : Взносна амортизацию денежной единицы (iaof , i , n).

Функция является обратной величиной текущей стоимости обыч ного аннуитета. Взнос на амортизацию денежной единицы используется для определения величины аннуитетного платежа в счет погашения кредита, выданного на определенный период при заданной ставке по креди ту.

Амортизация – это процесс, определяемый данной функцией, включает проценты по кредиту и оплату основной суммы долга.

При платежах, осуществляемых чаще, чем 1 раз в год используется следующая формула:

6 функция : Фактор фонда возмещения (sff , i , n)

Данная функция обратна функции накопления единицы за период. Фактор фонда возмещения показывает аннуитетный платеж, который необходимо депонировать под заданный процент в конце каждого пе риода для того, чтобы через заданное число периодов получить искомую сумму.

Для определения величины платежа используется формула:

При платежах (поступлениях), осуществляемых чаще, чем 1 раз в год: